Cross section measurements of capture reactions relevant to Nuclear Astrophysics

A. Lagoyannis Institute of Nuclear and Particle Physics, N.C.S.R. "Demokritos"

Pathways for heavy-element nucleosynthesis

s, r, s/r, and p nuclei from Rh (Z=45) to Nd (Z=60)

p nuclei and p-nuclei abundances

p nucleus	(%)	p nucleus	(%)	p nucleus	(%)
⁷⁴ Se	0.89	¹¹⁴ Sn	0.65	¹⁵⁶ Dy	0.06
⁷⁸ Kr	0.35	¹¹⁵ Sn	0.34	¹⁵⁸ Dy	0.10
⁸⁴ Sr	0.56	¹²⁰ Te	0.096	¹⁶² Er	0.14
⁹² Mo	14.84	¹²⁴ Xe	0.10	¹⁶⁴ Er	1.61
⁹⁴ Mo	9.25	¹²⁶ Xe	0.09	¹⁶⁸ Yb	0.13
⁹⁶ Ru	5.52	¹³⁰ Ba	0.106	¹⁷⁴ Hf	0.162
⁹⁸ Ru	1.88	¹³² Ba	0.101	¹⁸⁰ Ta	0.012
¹⁰² Pd	1.02	¹³⁸ La	0.09	^{180}W	0.13
¹⁰⁶ Cd	1.25	¹³⁶ Ce	0.19	¹⁸⁴ Os	0.02
¹⁰⁸ Cd	0.89	¹³⁸ Ce	0.25	¹⁹⁰ Pt	0.01
¹¹³ In	4.3	¹⁴⁴ Sm	3.1	¹⁹⁶ Hg	0.15
¹¹² Sn	0.97	¹⁵² Gd	0.20	abundances	

Reaction network

HAUSER-FESHBACH THEORY is required !

HAUSER-FESHBACH THEORY

Optical Model Potentials - Nuclear Level Densities γ-ray strength functions - Masses

 $(32 \le Z \le 83, 36 \le N \le 131)$

NEED FOR GLOBAL MODELS OF OMP, NLD, ...

Cross section calculations using the HF theory

Impact of nuclear physics uncertainties on p-nuclei abundances

 $\sigma v > min.$ ingredients (OMP, NLD, ...) in HF calculations.

M. Arnould and S. Goriely, Phys. Rep. 384, 1 (2003)

Gamow peaks and windows: the astrophysically relevant energies

γ angular distribution measurements: the (α , γ) problem

The $4\pi \gamma$ -summing method: The principle

The 4π γ -summing method: The setup

The 4π γ -summing method: The ${}^{92}Mo(\alpha,\gamma){}^{96}Ru$ example

Solutions (up to now):

- Theoretical calculations
- Simulation

No "real" experimental solution

The 4π γ -summing method: Efficiency calculation

The 4π γ -summing method: Efficiency calculation II

 ϵ_0 , α and b vary for even-even, odd-even and odd-odd compound nucleus Spyrou et al. Phys. Rev. C 76,015802 (2007)

The $4\pi \gamma$ -summing method: Efficiency check with known reactions

(α, γ) results: Comparison with theory

DG²: a global α – optical model potential

Nucl. Phys. A. 707, 253 (2002)

Improved global α -optical model potentials at low energies

P. Demetriou^{a,*}, C. Grama^b, S. Goriely^c

^a Institute of Nuclear Physics, NCSR "Demokritos", 153.10 Aghia Paraskevi, Athens, Greece
^b Institute of Physics and Nuclear Engineering, PO Box MG-6, Bucharest, Romania
^c Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Campus de la Plaine, CP-226, 1050 Brussels, Belgium

Real part V : double-folding method

<u>effective NN interaction:</u> M3Y -density dependent (Kobos et al, 1984) <u>projectile density:</u> n/p densities from elastic scattering data <u>target density:</u> Hartree-Fock theory

$U = V_{c} + V + iW + \Delta V$

Imag. part W : Woods-Saxon type

<u>Volume</u> + <u>Surface</u> (ratio, damping C)

geometry: r_w, a_w Fermi-type energy dependence of imaginary potential depth fitted to el. scattering + reaction data at E< 20 MeV

Correction ΔV : dispersive relations

Alpha-particle capture reaction cross-section systematics

Input parameters in HF calculations

Nucleosynthesis along the table of isotopes

