

Probing stellar evolution with abundance patterns in globular clusters

Karin Lind Max Planck Institute for Astrophysics Garching

Outline

How we collect information about single stars

 Challenging canonical stellar models using globular clusters

Photometry – many millions of individual stars

 Colours of single stars indicate their surface temperatures

 Clever filter combinations can add constraints on surface gravity and metal content

Spectroscopy – hundreds of thousands of individual stars

- Precise constraints on surface conditions: Teff, log(g), [X/H] (v_{rot}sin*i*, activity)
- Requires a model of the atmosphere

 Systematic uncertainties: 1D, LTE

Astroseismology – thousands of individual stars

 The power spectrum of magnitude oscillations can constrain: M, R, L, distance

 Need prior information on T_{eff} and [Fe/H]

Stellar structure models

- Needed to put the observables into context and derive stellar ages
 - Given [X/H] and M, age is wellconstrained post-MS
 - Without M, parameter degeneracy is high

Serenelli et al. 2013

Challenging the models

Globular clusters are stellar laboratories.
To 1st approximation all stars:

o... are coeval

.. share same initial chemical composition

.. are located at the same distance

Ages of GCs

Luminosity of MSTO: Age Horizontal 15 -Distance branch Red giant [X/H] branch Stellar models Visible luminosity Main sequence He diffusion turnoff Convection Main sequence Non Rolling 25 Alternative method: WD cooling sequence White dwarfs 30 1.0 Surface color 3.0 0.0 2.0

Observational signatures I

Observational signatures II

The 2nd Li problem

RGB evolution

Observational signatures III

Li decreases

C decreases

 $^{12}C/^{13}C$ decreases

N increases

O unaffected

Na unaffected

Gratton et al. 2000

The horisontal branch

He enhancement

Blue HB: Elevated Na → Elevated He

Many uncertainties in HB modelling:

He abundance Mass loss on RGB

Marino et al. 2011

Direct He measurements

Summary

- Through spectroscopic studies of globular clusters, canonical stellar models are challenged and new discoveries made
- 1D, LTE abundances are prone to systematic uncertainties of various sizes
- We need to understand atomic diffusion and mixing in radiative zones:
 - to age-date clusters
 - disentangle intrinsic and evolutionary effects
 - shed light on the cosmological Li problem
- Helium is a key to explaining the HB morphology