Nuclear astrophysics experiments with storage rings

Yuri A. Litvinov

10th Russbach School on Nuclear Astrophysics Russbach, Austria, 10-16 March 2013

Physics at Storage Rings

Single-particle sensitivity Broad-band measurements High atomic charge states High resolving power Long storage times Very short lifetimes

Direct mass measurements of exotic nuclei

Radioactive decay of highly-charged ions Charge radii measurements [DR, scattering]

Experiments with polarized beams

Experiments with isomeric beams [DR, reactions]

Nuclear magnetic moments [DR]

Astrophysical reactions [(p,g), (a,g) ...]

In-ring nuclear reactions

National Research Council's board on physics and astronomy

02.01.2002 The 11 Greatest Unanswered Questions of Physics

Resolution of these profound questions could unlock the secrets of existence and deliver a new age of science within several decades by Eric Haseltine, Illustrations by Dan Winters & Gary Tanhauser

3. How were the heavy elements from iron to uranium made?

Nuclear processes in astrophysics

Standard Abundance Distribution (SAD) vs. A

Nucleosynthesis on the Chart of the Nuclides

C

Limits of nuclear stability: superheavies; p- and n- drip lines; pathways of stellar nucleosynthesis

To measure: Ground state properties of exotic nuclei:

masses and β decay half-lives

masses determine the pathways of s-, rp- and r-processes

β half-lives the accumulated abundances

Current status of experimental nuclear masses

Up to 2004!

G. Audi et al., Nucl. Phys. A565, 1(1993); A 595, 409 (1995), A729.337(2003)

Predictive Powers of Mass Models

Predictive Powers of Mass Models

Calculated abundances assuming that one neutron separation energy is varied by 1 MeV

B. Pfeiffer et al.

Production Cross-Sections for Tin-Isotopes

e

GSÏ

Devices for precise mass measurements

Penning trap

Storage ring

particles at nearly rest in space relativistic particles
* ion cooling * long storage times
* single-ion sensitivity * high accuracy

Direct Mass Measurements on the Chart of the Nuclides

Secondary Beams of Short-Lived Nuclei

Experimental Storage Ring ESR

F. Nolden et al., NIM B 532 (2004) 329 M. Steck et al., NIM B 532 (2004) 357

Heavy Ion Research Facility in Lanzhou (HIRFL)

Experimental Cooler Storage Ring CSRe

Isochronous Mass Spectrometry

Isochronus-Mass-Spectrometry

Mass Measurements of ⁷⁸Kr Projectile Fragments New masses of ⁶³Ge, ⁶⁵As, ⁶⁷Se, and ⁷¹Kr

NUCLEAR ASTROPHYSICS

Star bursts pinned down

One of the main uncertainties in the burn-up of X-ray bursts from neutron stars has been removed with the weighing of a key nucleus, 65 As, at a new ion storage ring.

NATURE PHYSICS | VOL 7 | APRIL 2011 | www.nature.com/naturephysics

BRENNPUNKT

📕 Kein Halten am Wartepunkt

Hochpräzise Massenmessungen erklären die Kernreaktionen bei Ausbrüchen von Röntgenstrahlung. Physik Journal 10 (2011) Nr. 6

ernationales Büro

80-90% of the reaction flow passes through ⁶⁴Ge via proton capture reactions **Light curve shape of Type I x-ray burst**

X.L. Tu, et al., Phys. Rev. Lett. 106 (2011) 112501

Mass Measurements of ⁵⁸Ni Projectile Fragments New masses of ⁴³V, ⁴⁵Cr, ⁴⁷Mn, ⁴⁹Fe, ⁵¹Co, ⁵³Ni, and ⁵⁵Cu

Isobaric Multiplet Mass Equation

C

ELMHOLTZ GEMEINSCHAFT

$$ME(A, T, T_z) = a(A, T) + b(A, T)T_z + c(A, T)T_z^2$$

ernationales Büro

 dT_z^3 ?

Y.H. Zhang et al., Phys. Rev. Lett. 109 (2012) 102501

Mass Measurements of ⁵⁸Ni Projectile Fragments New masses of ⁴³V, ⁴⁵Cr, ⁴⁷Mn, ⁴⁹Fe, ⁵¹Co, ⁵³Ni, and ⁵⁵Cu

ernationales Büro

Ca-Sc Cycle [L. Van Wormer, ApJ 432 (1994) 326]

X.L. Yan et al., ApJL 766 (2013) L8

FAIR - Facility for Antiproton and Ion Research

ILIMA: Masses and Halflives

RI-RING at RIBF

GST

Radioactive decays of highly-charged ions

Few-electron ions well-defined quantum-mechanical systems

New decay modes (bound-pair-creation, bound-state beta decay, etc.)

Influence of electrons on radioactive decay

Astrophysical scenarios: high temperature = high degree of ionization

Nuclear Decays of Stored Single Ions

Time-resolved SMS is a perfect tool to study decays in the ESR

EC, β +, β -, bound-state β , and IT decays were observed

Bound-State β-decay

Bound-State β -decay of ¹⁶³Dy

s process: slow neutron capture and β - decay near valley of β stability at $kT = 30 \text{ keV}; \rightarrow \text{high atomic charge state} \rightarrow \text{bound-state } \beta \text{ decay}$

branchings caused by bound-state β decay

M. Jung et al., Phys. Rev. Lett. 69 (1992) 2164

GEMEINSCHAFT

C

Bound-State β-decay of ¹⁸⁷Re

F. Bosch et al., Phys. Rev. Lett. 77 (1996) 5190

C

ELMHOLTZ GEMEINSCHAFT

The 7 Nuclear Clocks

Bound-State Beta Decay of ²⁰⁵Tl Nuclei

New ESR proposal to study ²⁰⁵TI⁸¹⁺

F. Bosch, Yu.A. Litvinov et al., GSI Proposal E100 (2010)

In-Ring Reaction Studies

Clean, basically background free detection

Inverse kinematics

Ultra-thin windowless gas targets \rightarrow excellent energy, position and angular resolution

High revolution frequency compensates the loss in luminosity due to thin targets

¹⁵O(a,g)¹⁹Ne reaction for the rp-process

First transfer reaction measurement at the ESR

Capture reactions for astrophysics

Capture reactions for astrophysics

ESR: ⁹⁶Ru(p,γ)⁹⁷Rh at 10 MeV/u

ESR: ⁹⁶Ru(p,γ)⁹⁷Rh at 10 MeV/u

- Measurements directly in the Gamow window of the p-process
- Applicable to radioactive beams
- Clean experimental conditions

 $\sigma_{(p,\gamma)} = 3.6(5) \cdot 10^{-3}b$

Q. Zhong et al., J. Phys. Conf. Series 202 (2010) 012011 R. Reifarth et al., GSI Experimental Proposal

Future Measurements

CRYRING@ESR

Study Group

Norbert Angert Angela Bräuning-Demian Hakan Danared Wolfgang Enders Mats Engström Bernhard Franzke Anders Källberg Oliver Kester Michael Lestinsky Yuri Litvinov Markus Steck Thomas Stöhlker

CRYRING@ESR

Working Jour / http://www.gi.da/en/start/fair/fair_experimente_und_kollaborationen/sparc/news.htm

CRYRING@ESR

The case of CRYRING

- ESR: beam energies > 4.0 MeV/ureaction rates measurements in the Gamow window of the **p-process**
- Q. Zhong et al., J. Phys. CS 202 (2010) 012011

Cryring+ESR: beam energies 0.1-1.0 MeV/u reaction rates measurements in the Gamow window of the **rp-process R.** Reifarth et al., Cryring Physics Book

S. Bishop et al., Cryring Physics Book

TSR @ ISOLDE

TSR @ ISOLDE

- Half-life measurements of ⁷Be in different atomic charge states
- Capture reactions for astrophysical p-process
- Nuclear structure through transfer reactions
- Long-lived isomeric states
- Atomic effects on nuclear half-lives
- Nuclear effects on atomic decay rates
- Di-electronic recombination on exotic nuclei
- Neutrino physics; Tests for the neutrino beam project
- Purification of secondary beams from contaminants

TDR positively evaluated by

The fate of ⁷Be in the Sun

C. Rolfs et al., suggestion for an ESR proposal, ~2003 C. Rolfs, W. Rodney, Cauldrons in the Cosmos, 1988

TSR@ISOLDE will be the best place to perform such experiments!

The High Energy Storage Ring HESR

SPARC Experiments at the HESR:

A Feasibility Study

Thomas Stöhlker^{1,2,3}, Reinhold Schuch⁴, Siegbert Hagmann^{1,5}, Yuri A. Litvinov^{1,2} for the SPARC Collaboration^{*} Christina Dimopoulou¹, Alexei Dolinskii¹, & Markus Steck¹

Physics at Storage Rings

1913 - J. Thompson, Discovery of Isotopes (Nobel prize 1906)

- Special Issue of Int. J. Mass Spectr. "Birth of Mass Spectrometry"
- DPG Symposium "100 Years of Mass Spectrometry", Hanover, 2013

A

- 513. WE-Heraeus Seminar: "Astrophysics with Ion-Storage Rings", January 2013
- 530. WE-Heraeus Seminar on "Nuclear Masses and Nucleosynthesis", April 2013
 - New Atomic Mass Evaluation (AME2012) is to appear in 2013 December 2012

Many-many thanks to all my colleagues from all over the world !!!

