In-Beam Experiments for Nuclear Astrophysics at HORUS

<u>J. Mayer</u>^{1*}, J. Endres, L. Netterdon, A. Sauerwein, P. Scholz^{*}, and A. Zilges

Institut für Kernphysik, Universität zu Köln

10th Russbach School on Nuclear Astrophysics

Russbach, March 2013

bcgs

¹) jan.mayer@ikp.uni-koeln.de *) Supported by the Bonn-Cologne Graduate School of Physics and Astronomy Supported by the DFG (ZI 510/5-1)

AG Zilges, IKP, Universität zu Köln In-Beam Experiments at HORUS

- Introduction
- Experimental Setup in Cologne
- Data evaluation
- Outlook

- Different processes in various astrophysical scenarios
- Example: p process
 - large network of reactions
 - thousands of reactions on mainly unstable nuclei

M. Arnould and S. Goriely, Phys. Rep. 384 (2003)

Prediction of reaction rates

- Number of reactions too large to measure all of them (≈ 20000)
- Calculations e.g. with Hauser-Feshbach statistical model necessary

Limitations of activation technique

In-Beam technique to overcome limitations

Institute for Nuclear Physics, University of Cologne

Grafik: © 2013 Aero West, Aero data International Surveys, GeoBasis-DE/BKG, GeoContent, GeoEye, Karten daten © 2013 GeoBasis-DE/BKG (© 2009), Google Maps Photo: S. Pickstone

Jan Mayer

Tandem Accelerator in Cologne

- 10 MV FN-Tandem ion accelerator
- Ion sources
 - Sputter source (p)
 - Duoplasmatron (α)
- Multiple Setups
 - Cologne Plunger
 - Orange Spectrometer
 - PIXE
 - HORUS Spectrometer

HORUS γ-ray Spectrometer

- 14 HPGe detectors
 - High resolution
 ≈ 2 keV @ 1332 keV
 - High total efficiency
 ≈ 2% @ 1332 keV
- 5 different detector angles
 - determination of angular distributions
- BGO shields and lead collimators available
- Digital signal processing
 - MCA and listmode data
 - γγ coincidences

Target Chamber Built for Nuclear Astrophysics

- Built-in detector for Rutherford backscattering spectrometry (RBS)
- Cooling trap
- Tantalum coating
- Current readouts
 - Target, Chamber, Cup
- δ-electron suppression
- Flexible Cup

- de-excitation of the entry state
 - determination of partial cross sections
- transitions to the ground state
 - determination of the total cross section
- transitions to excited states
 - production of excited states

⁸⁹Y(p,γ) – In-Beam Spectrum

⁸⁹Y(p,γ) – Data Analysis

⁸⁹Y(p,γ) – Data Analysis

Additional Information

- Partial cross sections
- Angular distributions

100

50

20

10

a [إله]

100

50

20

10

د [hb]

Outlook

- α-particle induced reactions
 - First test experiments with an α -particle beam performed
- Further improvements
 - Shield more detectors with BGOs or lead collimators
 - Reduce beam induced background
- Planned In-Beam experiments
 - (α, γ) and (α, n) reactions on the Samarium isotopic chain
 - (α , γ) and/or (α ,n) reactions on ¹⁰⁴Pd, ¹⁷⁶Hf, ¹⁹⁸Pt
 - (p, γ) reactions on ¹¹⁰Cd, ¹⁴²Nd, ¹⁸²W

Jan Mayer

Rutherford Backscattering Spectrometry

Cross section measurements with AMS

$^{74}Ge(p,\gamma)$ - Results

- cross section dominantly sensitive to proton width
- renormalization factor of 2 of proton width yields good reproduction
- reaction rate higher by 28 % compared to non-smoker prediction

A. Sauerwein *et al.*, Phys. Rev. C **86** (2012) 035802

T. Rauscher, code SMARAGD, version 0.8.4s, 2012

What are the *p* nuclei?

- 30 to 35 neutron-deficient nuclei between Se and Hg
- not produced by neutron-capture processes
- Iow isotopic abundances of 0.1 − 1 %

Motivation

- Measurement of ion-induced reactions
- experimental difficulties due to: measurement at energies below the Coulomb barrier for heavy nuclei (E_{Gamow} ≈ 6 – 14 MeV @ 3 GK)
- e.g. for ¹⁶⁸Yb(a,g): $E_{Gamow} \approx 7 11 \text{ MeV} \ll E_{coul} \approx 24 \text{ MeV}$

very sensitive determination of small cross sections needed

Experimental difficulties

- number of reactions too large to measure all of them (≈ 20.000)
- many reactions on radioactive nuclei not easily accessible
- measurement inside Gamow window often below Coulomb barrier
 small cross sections

• e.g. for ¹⁶⁸Yb(α,γ): E_{Gamow} ≈ 8 – 11 MeV << E_{coul} ≈ 24 MeV

calculations with Hauser-Feshbach statistical model necessary

- to calculate reaction rates, if no experimental data is available
- to extrapolate the data towards smaller energies, if experimental data is available above the Gamow window

improvement of nuclear models to calculate reaction rates

- nuclear masses
- properties of excited states
- nuclear level densities
- γ-strength functions
- optical model potentials (OMP)