Activation measurement of the 187 Re(α ,n) reaction at the Cologne Clover counting-setup

P. Scholz*, J. Endres, J. Mayer*, L. Netterdon, A. Sauerwein*, and A. Zilges

10th Russbach Workshop on Nuclear Astrophysics

Bonn-Cologne Graduate School of Physics and Astronomy

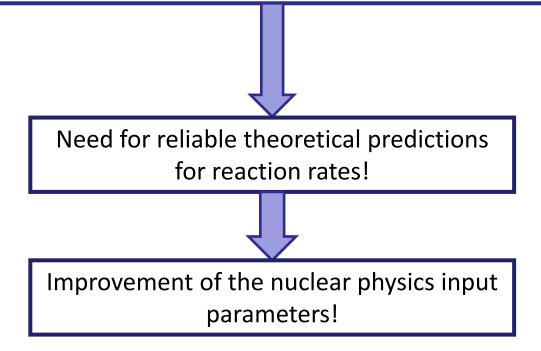
March 13th , 2013

Supported by DFG (ZI 510/5-1, INST 216/544-1)
*Supported by the Bonn-Cologne Graduate School of Physics and Astronomy

Outline

- Astrophysical Motivation
 - p process nucleosynthesis
 - α -nucleus optical-model potential
- Activation measurement of 187 Re(α ,n)
 - Activation technique in a nutshell
 - Cologne Clover Counting-Setup
 - γγ-coincidence method
- Summary

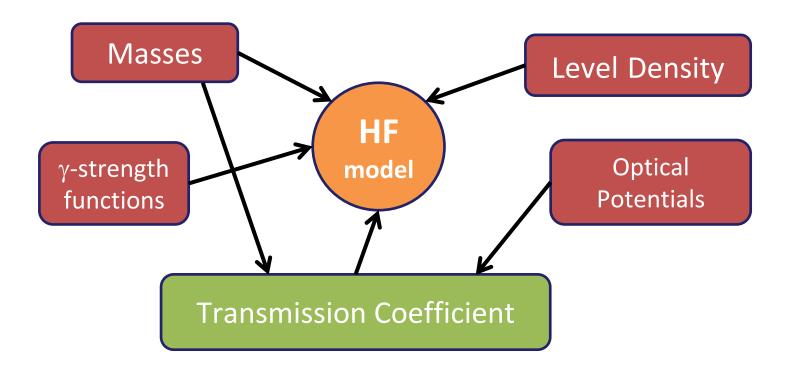
p nuclei: about 35 neutron-deficient nuclei which are bypassed by the
 s- and r-process


- p nuclei: about 35 neutron-deficient nuclei which are bypassed by the s- and r-process
- p process is a bunch of different processes

- p nuclei: about 35 neutron-deficient nuclei which are bypassed by the
 s- and r-process
- p process is a bunch of different processes
- At least the γ-process reaction network includes about 20000 reactions

- p nuclei: about 35 neutron-deficient nuclei which are bypassed by the
 s- and r-process
- p process is a bunch of different processes
- At least the γ-process reaction network includes about 20000 reactions

Need for reliable theoretical predictions for reaction rates!

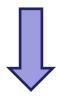

- p nuclei: about 35 neutron-deficient nuclei which are bypassed by the
 s- and r-process
- p process is a bunch of different processes
- At least the γ -process reaction network includes about 20000 reactions

Using Hauser Feshbach statistical model calculation to derive reaction rates

Using Hauser Feshbach statistical model calculation to derive reaction rates

Construction of a global optical-model potential for α -induced reactions

Construction of a global optical-model potential for α -induced reactions


Experimental Data*							
23 x (α,γ)	72 x (α,n)	7 x (α,p)					

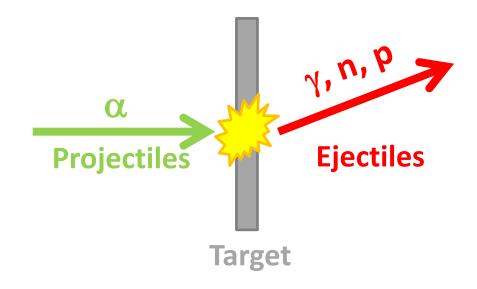
* KADoNiS Database (February 2013)

Construction of a global optical-model potential for α -induced reactions

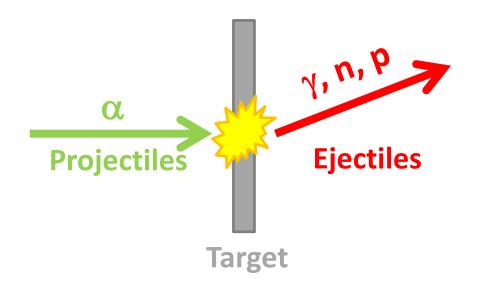
Experimental Data*								
23 x (α,γ)	72 x (α,n)	7 x (α,p)						

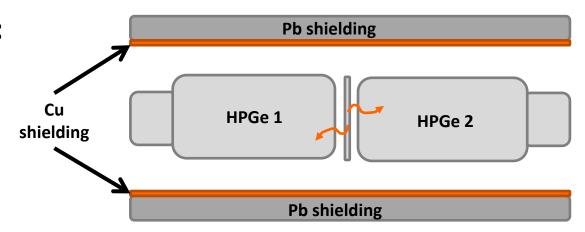
Only seven (α,n) -reactions for A > 160 and only three for A > 180 !!

* KADoNiS Database (February 2013)

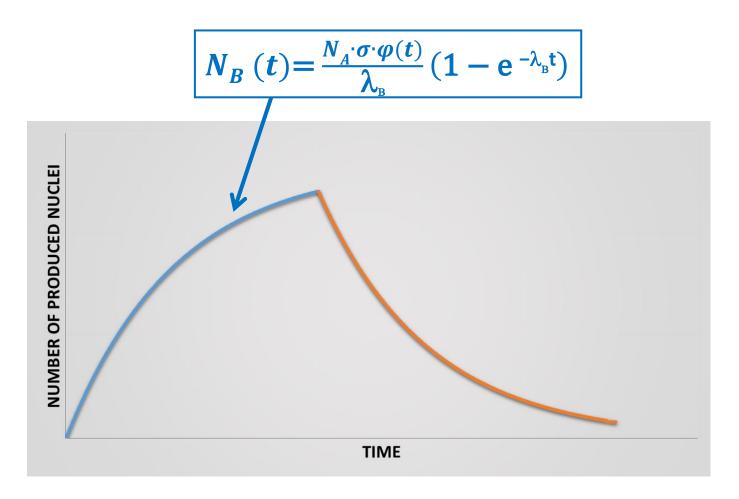

Activation measurement of 187 Re(α ,n)

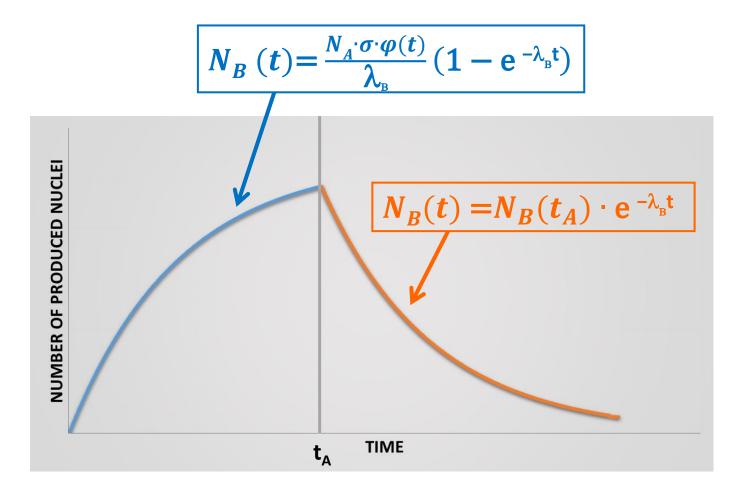
OL.	β+	OL.	β+	ο.	β+	β+	β+	β+	β+	5	β-
Pt 184	Pt 185	Pt 186	Pt 187	Pt 188	Pt 189	Pt 190	Pt 191	Pt 192	Pt 193	Pt 194	Pt 195
β+ α.	β+	β+	β+	3	β+	OL.	3	stabil	3	stabil	stabil
lr 183	Ir 184	Ir 185	Ir 186	Ir 187	Ir 188	Ir 189	Ir 190	lr 191	Ir 192	Ir 193	Ir 194
β+ α	β+	β+	β+	β+	β+	8	β+	stabil	β- β+	stabil	β-
Os 182	Os 183	Os 184	Os 185	Os 186	Os 187	Os 188	17, 189	Os 190	Os 191	Os 192	Os 193
ε	β+	β+,β+ α	8	a.	stabil	stabil	stabil	stabil	β-	stabil	β-
Re 181	Re 182	Re 183	Re 184	Re 185	Re 186	Re 187	Re 188	Re 189	Re 190	Re 191	Re 192
β+	β+	8	β+	stabil	β- ε	β-	β-	β-	β-	β-	β-
W 180	W 181	W 182	W 183	W 184	W 185	W 186	W 187	W 188	W 189	W 190	W 191
stabil	8	stabil	O.	α.	β-	β-,β- α	β-	β-	β-	β-	β-
Ta 179	Ta 180	Ta 181	Ta 182	Ta 183	Ta 184	Ta 185	Ta 186	Ta 187	Ta 188	Ta 189	Ta 190


- 187 Re is a quasi-stable nucleus ($T_{1/2} \approx 4.33 \times 10^{10} \text{ y}$)
- 190 Ir decays with a half-life of 11.8 days to 190 Os


1. In-Beam Activation:

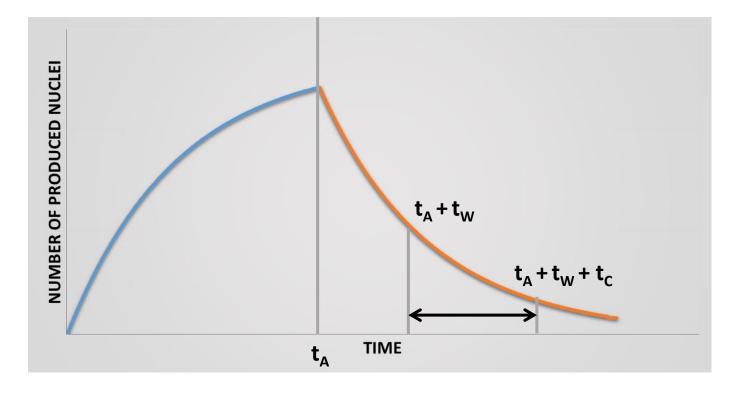
1. In-Beam Activation:


2. Off-Beam Counting:


Produced nuclei B by activating nuclei A with a constant beam current for time t

$$N_B(t) = \frac{N_A \cdot \sigma \cdot \varphi(t)}{\lambda_B} (1 - e^{-\lambda_B t})$$

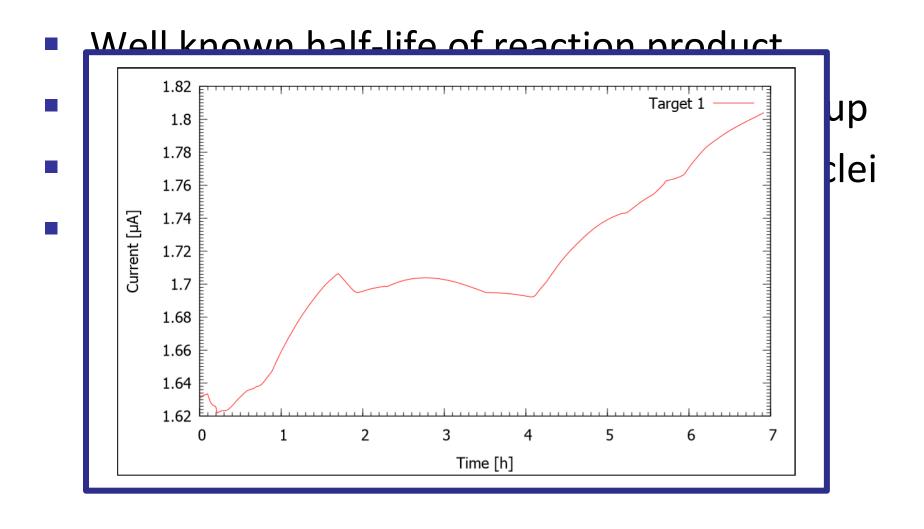
Produced nuclei B by activating nuclei A with a constant beam current for time t



Produced nuclei B by activating nuclei A with a constant beam current for time t

• Counting numbers of emitted γ 's for a certain time to reconstruct $N_B\left(t_A\right)$

$$N_B(t_A) = \frac{N_{\gamma} \cdot e^{\lambda t_w}}{I \cdot \varepsilon \cdot \tau \cdot (1 - e^{-\lambda t_c})}$$



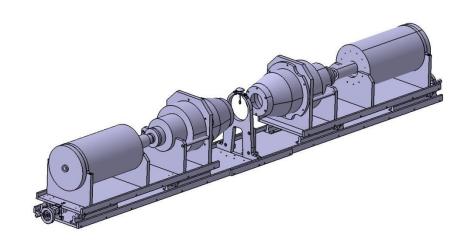
Well known half-life of reaction product

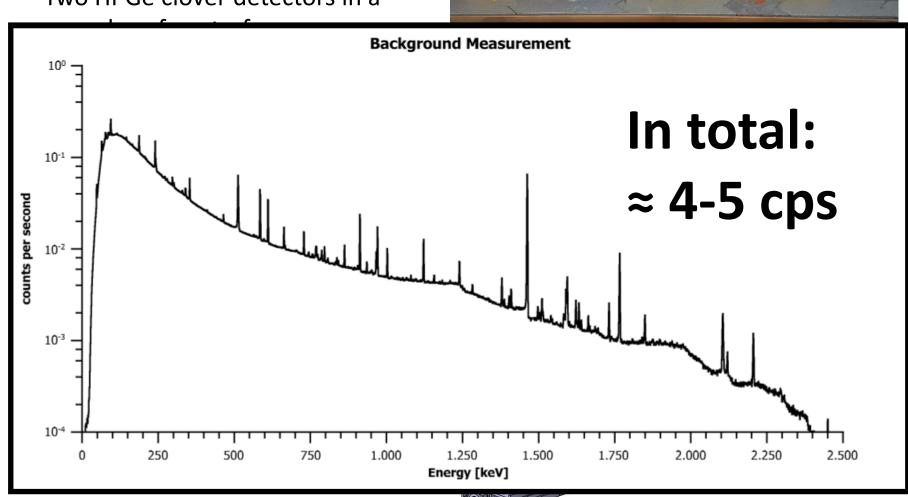
- Well known half-life of reaction product
- Good efficiency calibration of counting setup

- Well known half-life of reaction product
- Good efficiency calibration of counting setup
- Determination of the number of target nuclei

- Well known half-life of reaction product
- Good efficiency calibration of counting setup
- Determination of the number of target nuclei
- Absolute γ-ray intensities

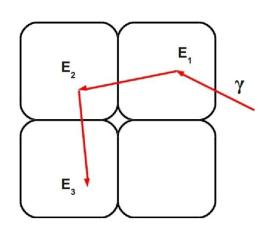
- Well known half-life of reaction product
- Good efficiency calibration of counting setup
- Determination of the number of target nuclei
- Absolute γ -ray intensities
- Precise current measurement


Activation @ PTB Braunschweig


- Cyclotron @ PTB Braunschweig
- α -beam currents of a few μ A
- Water cooled target & cooling trap at temperature of liquid nitrogen
- Activation of natural rhenium targets at 5 different α -energies between 12.4 MeV and 14.1 MeV (Gamow window @3GK: 8.21 11.03 MeV)

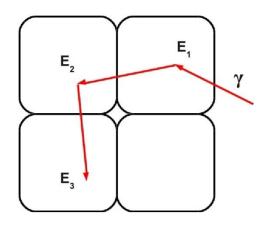
- Two HPGe clover detectors in a very close face-to-face geometry
- Cover a solid angle of almost 4π
- Total photopeak efficiency between 5 and 8 % @ 1332 keV
- Can be equipped with BGOshields
- Good energy resolution: ca. 2 keV @ 1332 keV
- Digitized data acquisiton writing data event-by-event in listmode files
- moveable mounting allows to vary distance to target
- Shielding with lead and copper

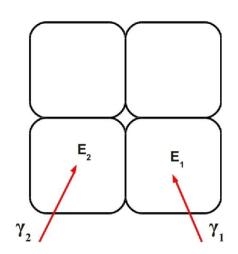
Two HPGe clover detectors in a


Shielding with lead and copper

Each clover detector consists out of 4 individual HPGe-crystals with their own preamplifier

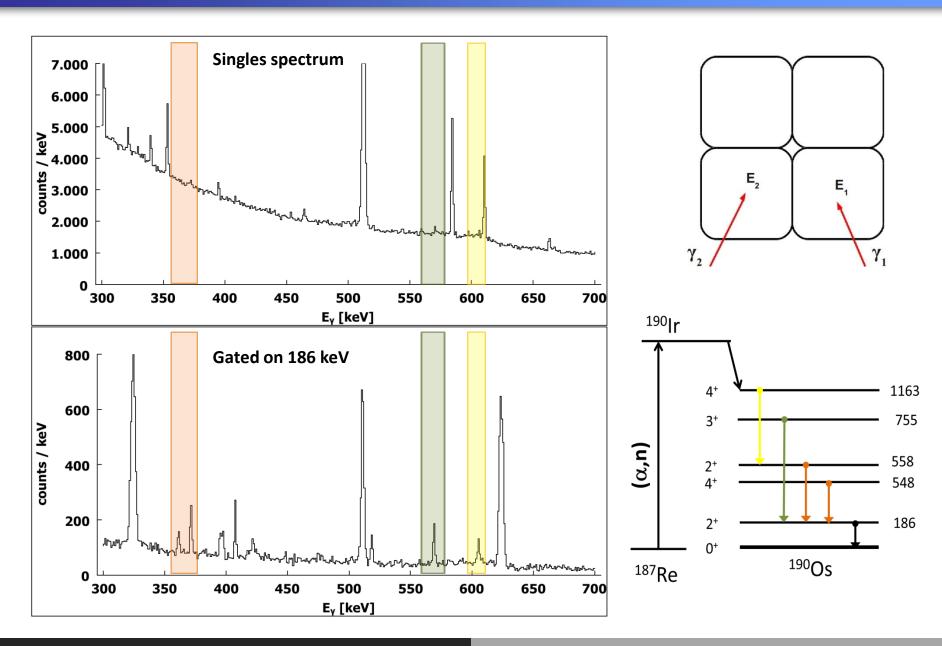
G. Duchêne et al., Nucl. Instr. and Meth. A 432 (1999) 90


- Each clover detector consists out of 4 individual HPGe-crystals with their own preamplifier
- Active compton-background reduction via addback



G. Duchêne et al., Nucl. Instr. and Meth. A **432** (1999) 90

- Each clover detector consists out of 4 individual HPGe-crystals with their own preamplifier
- Active compton-background reduction via addback
- Using $\gamma\gamma$ -coincidence method to reduce the background in the spectra and determine absolute cross sections (successfully applied for ¹⁴¹Pr(α ,n)¹⁴⁴Pm *)



G. Duchêne et al., Nucl. Instr. and Meth. A 432 (1999) 90

^{*}A. Sauerwein et al., Phys. Rev. C 84 (2011) 045808

γγ-coincidence method

- Activation technique is a good tool for the determination of total cross sections
 - No beam-induced background
 - Good background shielding

- Activation technique is a good tool for the determination of total cross sections
 - No beam-induced background
 - Good background shielding
- Clover detectors in close geometry
 - γγ-coincidence method
 - Addback-algorithm for reduction of compton-induced background

- Activation technique is a good tool for the determination of total cross sections
 - No beam-induced background
 - Good background shielding
- Clover detectors in close geometry
 - γγ-coincidence method
 - Addback-algorithm for reduction of compton-induced background
- Limits:
 - Need for unstable reaction products
 - Unfeasible half-life (too short, too long)
 - No partial cross sections

- Activation technique is a good tool for the determination of total cross sections
 - No beam-induced background
 - Good background shielding

Thank you for your attention!

- Limits:
 - Need for unstable reaction products
 - Unfeasible half-life (too short, too long)
 - No partial cross sections