PROTON INGESTION AND NEUTRON-CAPTURE NUCLEOSYNTHESIS

Richard J. Stancliffe

Argelander Institute für Astronomie, Bonn

Alexander von Humboldt

Stiftung/Foundation

Wed Apr 20 23:33:11 2011

OVERVIEW

AGB evolution

Proton ingestion episodes

Hydrodynamical models

Making sense of it all...

CARBON-ENHANCED STARS

 A large fraction of metal-poor stars are carbon-rich

Perhaps as many as 20%

Some show enrichments of heavy elements, particularly of s-process elements

Many of these also show radial velocity variations...

Lucatello et al. (2006)

HEAVY ELEMENTS

Lugaro et al. (2012), data from Masseron et al. (2010)

ASYMPTOTIC GIANT BRANCH STARS

Final stage of the life of a low mass star

 Unstable double shell burning – thermal pulses

Third dredge-up

Strong winds erode the envelope

Karakas et al. (2002)

2. He burning ignites, drives convection between shells

2. He burning ignites, drives convection between shells

He burning ashes: ¹²C

3. He-burning shuts off, expansion cools the H-shell

4. Convective envelope penetrates inward Third Dredge-up!

12

AGB NUCLEOSYNTHESIS

S-PROCESS NUCLEOSYNTHESIS

Neutron source: ${}^{13}C(a,n){}^{16}O$ or ${}^{22}Ne(a,n){}^{25}Mg$

FORMATION MECHANISM

HEAVY ELEMENTS

Lugaro et al. (2012), data from Masseron et al. (2010)

EVOLUTION AT LOW-Z

 Evolution changes at low metallicity

 He driven convection no longer trapped below the H-burning shells

Proton can be drawn into the convective region

Mixing, burning take place on similar timescales – hard to get this right in a ID code!

Lau, Stancliffe & Tout (2009)

THE CASE FOR HYDRO MODELLING

The event is of short duration
Hydro can only simulate hours of star time

Aim: take a 'snapshot' to see what the physics is and see what we should do in ID

Stancliffe et al. (2011)

Djehuty Ability to Model Whole Stars in Three Dimensions

Hydrogen Helium, Carbon, and Oxygen Burning + NSE :

7 element suite: ¹H, ³He, ⁴He, ¹²C, ¹⁴N, ¹⁶O, ²⁴Mg

21 element suite: ¹H, ³He, ⁴He, ¹²C, ¹³C, ¹³N, ¹⁴N, ¹⁵N, ¹⁵O, ¹⁶O, ¹⁷O, ¹⁸O, ¹⁷F, ¹⁸F, ¹⁹F, ²⁰Ne, ²²Ne, ²⁴Ma, ²⁸Si, ³²S, ⁵⁶Ni

In both element sets, the proton-proton chain is handled with the proton capture on Deuterium is assumed instant:

> **p** (**p**, β v) **D** (**p**, γ) ³He ³He(³He,2p) ⁴He 3 He(4 He, γ) 7 Be (p, 4 He) 4 He

The 21 element suite is suitable for the Hot CNO cycle, including leakage into ¹⁹F.

¹² C(p,γ) ¹³ N	¹³ N(β, ν) ¹³ C	¹³ C(p,γ) ¹⁴ N
¹⁴ N(p,γ) ¹⁵ O	¹⁵ Ο(β, ν) ¹⁵ Ν	¹⁵ N(p,α) ¹² C
¹⁵ N(p,γ) ¹⁶ O	¹⁶ Ο(p,γ) ¹⁷ F	¹⁷ F(β, ν) ¹⁷ O
¹⁷ Ο(p ,α) ¹⁴ N	¹⁷ O(p,γ) ¹⁸ F	¹⁸ F(β, ν) ¹⁸ O
¹⁸ O(p,α) ¹⁵ N	¹⁸ Ο(p,γ) ¹⁹ F	

The 7 element set includes only the slower rates. The beta decays on ¹³C, ¹⁵O, ¹⁷F, and ¹⁸F are assumed instantaneous, as are the proton captures on ¹⁵N and ¹⁷O:

In the 21 element set, reactions included;

¹²C(γ,2α)⁴He

¹⁶O(α,γ)²⁰Ne

¹⁸O(α,γ)²²Ne

 $^{24}Mg(\gamma,\alpha)^{20}Ne$

⁴He(2α, γ)¹²C ¹⁶**Ο**(γ,α)¹²**C** ²⁰Ne(α, γ)²⁴Mg ²⁸Si(γ,α)²⁴Mg ¹⁴N(α,γ)¹⁸O

¹²C(α,γ)¹⁶O ²⁰Ne(γ,α)¹⁶O ²⁴Mg(α,γ)²⁸Si ²⁸Si(α,γ)³²S ³²S(γ,α)²⁸Si

The following reactions are included for beginning advanced stages of massive star evolution ¹²C(¹²C,_V)²⁴Ma ¹²C(¹⁶O,_V)²⁸Si ¹⁶O(¹⁶O,_V)³²S

In the 7 element set, the ¹⁸O(α,γ)²²Ne reaction is assumed to happen instantaneously, and the mass fraction change is places with all other heavy elements in ²⁴Mg

 $\frac{dY({}^{4}He)}{dt} = -7Y({}^{40}Ca)Y({}^{4}He)\lambda_{ter}({}^{40}Ca) + 7Y({}^{44}Ti)\lambda_{ter}({}^{44}Ti)$ **NSE following Timmes,** $\frac{dY({}^{*}Si)}{dt} = -Y({}^{40}Ca)Y({}^{4}He)\lambda_{\alpha\gamma}({}^{40}Ca) + Y({}^{44}Ti)\lambda_{\alpha\gamma}({}^{44}Ti)$ Hoffman, and Woosley, 2000, ApJ, 129, 377-398 $\frac{dY({}^{56}Ni)}{dt} = +Y({}^{40}Ca)Y({}^{4}He)\lambda_{\alpha\gamma}({}^{40}Ca) - Y({}^{44}Ti)\lambda_{\alpha\gamma}({}^{44}Ti)$

Arbitrary Lagrange-Eulerian (ALE) Hydrodynamics

The ALE method with a predictor-corrector Lagrange-Remap formalism, is second-order accurate in both time and space.

Proton ingestion episodes

- Modelled a 1 solar mass Z=10⁻⁴ star on the asymptotic giant branch
- Threw away the convective envelope
- 40³ zone central cube, 200 radial zones in each arm
- 144 CPUs
- Evolved for 4.5 hours of star time

Stancliffe, Dearborn, Lattanzio, Heap & Campbell, 2011, ApJ, 742, 121

HYDRODYNAMIC SIMULATIONS

ENERGY GENERATION

DB: HeFHi1250000.root Cycle: 1250000 Time:1.40864

ENERGY SOURCES

 L_X/L_{\odot}

Proton ingestion episodes

- No evidence that convective zone will split
- Transport by plumes is very rapid
- Energy released only at the bottom of the convective zone
- Hydrogen luminosities orders of magnitude more than the 1D models

HYDRODYNAMIC SIMULATIONS

Transport of material is definitely not diffusive!

Protons can travel across the intershell without burning

H-burning energy is injected close to the He-burning shell – no different from normal helium burning

No chance of getting the convective zone to split!

What will this mean for nucleosynthesis???

PROSPECTS FOR NUCLEOSYNTHESIS

- Abundant I3C in the intershell
- Burning temperatures high enough for ¹³C(a,n)¹⁶O to be activated
- What is the neutron exposure?

SUMMARY

CEMP(-s) stars tell us about AGB nucleosynthesis in the early Universe

ID stellar models are problematic at low Z

Hydrodynamical modelling guides how we should be treating the physics

What can we get from the neutron capture nucleosynthesis?