Towards understanding the origin of *p*-nuclei:

An experimental approach for studying key photonuclear reactions

Adriana Banu

JMU, Department of Physics and Astronomy Harrisonburg, Virginia, USA

Connecting Quarks to the Cosmos

Eleven Science Questions for the New Century (2003) - National

- Academy Study, Chair M. Turner
- —What is dark matter?
- -What is the nature of the dark energy?
- -How did the Universe begin?
- -Did Einstein have the last word on gravity?
- —What are the masses of the neutrinos and how have they shaped the evolution of the universe?
- -How do cosmic accelerators work?
- —Are protons unstable?
- —Are there new states of matter at exceedingly high density and temperature?
- —Are there additional space-time dimensions?

—Is a new theory of matter and light needed at the highest energies?

What about the nucleosynthetic origin of the 35 trans-iron nuclides , all on the proton-rich side of the valley of stability – the so called *p*-nuclei?

"The first remarkable feature of this process (*p*-process) is the scarcity of the efforts devoted to its understanding. After about 50 years of nuclear astrophysics research, the number of articles devoted to it still remains inferior to the 35 nuclides traditionally classified as *p*-nuclides." (Arnould and Goriely (2003))

Table 1: The 'historical' 35 *p*-isotopes and their relative abundance (%) to the respective elements in the solar system.

Isotope	%	Isotope	%	Isotope	%
	Abundance	_	Abundance	_	Abundance
^{/4} Se	0.87	¹¹⁴ Sn	0.66	¹³⁶ Dy	0.0524
⁷⁸ Kr	0.354	¹¹⁵ Sn	0.35	¹⁵⁸ Dy	0.0902
⁸⁴ Sr	0.56	¹²⁰ Te	0.089	¹⁶² Er	0.136
⁹² Mo	15.84	¹²⁴ Xe	0.126	¹⁶⁴ Er	1.56
⁹⁴ Mo	9.04	¹²⁶ Xe	0.115	¹⁶⁸ Yb	0.135
⁹⁶ Ru	5.51	¹³⁰ Ba	0.101	¹⁷⁴ Hf	0.18
⁹⁸ Ru	1.87	¹³² Ba	0.0097	^{180m} Ta	0.0123
¹⁰² Pd	0.96	¹³⁸ La	0.091	¹⁸⁰ W	0.135
¹⁰⁶ Cd	1.215	¹³⁶ Ce	0.193	¹⁸⁴ Os	0.018
¹⁰⁸ Cd	0.875	¹³⁸ Ce	0.25	¹⁹⁰ Pt	0.0127
113 In	4.28	144 Sm	3.09	¹⁹⁶ Hg	0.146
¹¹² Sn	0.96	¹⁵² Gd	0.20		

(p.y)

"P-process studies are among the most complicated nucleosynthesis processes." (Iliadis, Nuclear Physics of Stars (2007))

- an extended network of some 20000 reactions linking about 2000 nuclei must be followed by an explicit computation
- *p*-process operates far from equilibrium
- concepts of steady flows or reaction rate equilibria cannot be used

Peak temperature, timescale, proton density, seed abundances!

2011

anbul, May :

-proce

B²FH+Cameron (1957)

H-rich layers of SNII

(p,γ) and (γ,n) reactions operating on preexisting s- and r-seed nuclei
Cameron called them '<u>excluded isotopes</u>'
Because of the dominant role of played by proton reactions, named these
'p-process' nuclei
They suggested temperature of the order of 2.5 10° K for as high densities as 100 g/ cm³, and timescale of 10-100 s

p-process Claudia Travaglio Istanbul, May 24-27 2011

Arnould (1976)

A large enhancement of heavy elements, presumably by prior s-processing is required. Only s-seed nuclei should be enhanced and not r-process seeds (recognized to be not important seeds).

D-process Claudia Travaglio Stanhul May 24-27 201

Woosley & Howard (1978)

They found that the (p,γ) chain may require physical conditions that cannot be easily realized in nature. (p,γ) and (p,n) play no role.

Alternatively, they proposed γ-process. A distribution of heavy elements subjected to a 'hot photon bath' ((γ, n), (γ, p), (γ, α)) will be transformed on a timescale of 1s into a distribution of nuclei close to the solar distribution of *p*-nuclei
T optimum conditions for the synthesis of *p*-nuclei in explosive events: 2 - 3.2 10⁹ K

p-process Claudia Travaglio Istanbul, May 24-27 2011

Howard, Meyer & Woosley (1991)

A new site for the gamma-process: Type la supernovae. CO-WD that explodes by deflagration or detonation.

They investigate chains to produce the light-p, and found that

 86 Kr(p, γ) ... 90 Zr(p, γ) 91 Nb(p, γ) 92 Mo

is responsible for half of ⁹²Mo (and important for ⁹⁰Zr as well) and (p,γ) reactions produce also ⁹⁶Ru. The other half of ⁹²Mo, and ⁹⁴Mo, come from (γ,n) reaction sequence • impossible to reproduce the solar abundances of *all p*-isotopes using a single process

 several different sites and (independently operating) processes seem to be required

• largest fraction of p-isotopes is created by sequences of photodisintegrations and β^+ decays (**the** γ -**process**)

• generally accepted that the γ -process occurs mainly in explosive O/Ne burning during supernova Type II explosions at temperatures in the range of T \approx 2-3 GK, but supernovae Type Ia and Ib/c have also been considered

• calculations based on the γ -process concept can produce the bulk of the p-nuclei within a factor of \approx 3 of their solar system (SS) values

• **BUT**, the most abundant *p*-isotopes, ^{92,94}**Mo and** ^{96,98}**Ru** are notoriously underproduced, making their nucleosynthesis one of the great outstanding mysteries in nuclear astrophysics

A process designed to synthesize *p*-nuclei should surely account for the most abundant of these nuclides !!!

A remarkable breakthrough for the endemic problem:

For the first time,

a stellar source has been shown to produce both, light and heavy *p*-nuclei, at the same level as ⁵⁶Fe, including the very abundant Mo and Ru *p*-isotopes!!!

Results: solar metallicity

P-process Claudia Travaglio Istanbul, May 24-27 2011

ussbach, March 12-16 2012

Looking deeper into p-nuts: ⁹⁴Mo mistery

Looking deeper into p-nuts: ⁹⁴Mo mistery fixed, maybe !

P-process nucleosynthesis: An experimental approach for studying *key* photonuclear reactions

Reactions of interest:

 $^{94}Mo(\gamma,n)^{93}Mo$

$$\frac{80}{Kr(\gamma, n)^{79}Kr}$$
 - Key branching point in the γ -process path Rauscher (PRC 73, 2006)

Experiments with real photons: Laser Compton Backscattering technique Bremsstrahlung-induced activation

Photonuclear Reaction Rates

The reaction rate for a photodisintegration reaction $\lambda(T) = \int_{0}^{\infty} cn_{\lambda}^{Planck}(E,T)\sigma(E)dE$ $n_{\gamma}^{Planck}(E,T) = \left(\frac{1}{\pi}\right)^{2} \left(\frac{1}{\hbar c}\right)^{3} \frac{E^{2}}{\exp(E/kT) - 1}$

Experimental method: Laser Compton Backscattering (LCB)

$$\mathsf{E}_{\gamma} = \frac{\hbar\omega \cdot \left(1 - \beta \cdot \cos\theta_{\mathsf{i}}\right)}{1 - \beta \cdot \cos\theta_{\mathsf{f}} + \frac{\hbar\omega}{\mathsf{E}_{\mathsf{electron}}} \left(1 - \cos\theta_{\mathsf{photon}}\right)}$$

• Example: $E_{laser} = 3.3 \text{ eV}$, $E_{electron} = 450 \text{ MeV} (\gamma = 882)$ $\rightarrow E_{\gamma} = 10 \text{ MeV}$

Photoneutron cross section measurements

$$\sigma(E_{\gamma}) = \frac{N_n}{N_{\gamma}N_t\varepsilon_n}$$

 N_n – number of neutrons detected using ³He counters N_γ - number of incident photons N_t – number of target atoms per unit area (enriched target) ϵ_n – neutron detection efficiency

Cross section measurements for ⁹⁴Mo(γ,n)⁹³Mo @ HIGS

The only way to study experimentally the cross section for ⁹⁴Mo(γ,n) in the ground state is by direct neutron counting!!!

Beam time already approved at HIGS facility!

Experimental method: bremsstrahlung-induced activation

 Production by stopping of electron beam with energy E₀
 Continuous-energy photon spectrum with max. energy E₀

Photoneutron reaction rate measurements at astrophysical energies @ JMU - Madison Radiation Facility

Reactions of interest:

⁷⁴Se(γ ,n), ^{78,80}Kr(γ ,n), ⁸⁴Sr(γ ,n) with S_n = ~ 12 MeV

Experimental method:

Bremsstrahlung-induced activation

Facility available:

Medical linear electron accelerator manufactured by Siemens to provide X-ray beam energies up to 15 MeV Co-production of historical *p-, s-* and *r*-process isotopes of Zr, Mo and Ru in the neutrino-wind of core-collapse supernovae

Oliver Hallmann and Karl-Ludwig Kratz

Max-Planck-Institute for Chemistry, Mainz

Core-collapse SN "HEW" ...still one of the presently favoured scenarios for a rapid neutron-capture nucleosynthesis process

Neutrino cooling and neutrino-driven wind ($t \approx 10$ s)

The **neutrino-driven wind** starts from the surface of the proto-neutron star with a flux of neutrons and protons.

As the nucleons cool ($\approx 10 \ge T_9 \ge 6$), they combine to α -particles + an excess of unbound neutrons.

Further cooling $(6 \ge T_9 \ge 3)$ leads to the formation of a few Fe-group "seed" nuclei in the so-called α -rich freezeout.

Still further cooling $(3 \ge T_9 \ge 1)$ leads to neutron captures on this seed composition, making the heavy **r**-process nuclei.

(Woosley & Janka, Nature, 2005)

Historical nucleosynthesis processes vs. HEW

Historical = M. Burbidge, G. Burbidge, W. Fowler, F. Hoyle (1957) until end of '90s \rightarrow Wallerstein et al. (1997)

	Historical	HEW
р	p-captures (rp), photodesintegration	Charged-particle reactions (CPR)
S	n-captures at stability, Y _n /Y _{seed} ≈ 2 (Gallino)	CPR, late n-captures
r	n-rich isotopes far off stability	CPR + subsequent n-captures

Two conundrums:

- The SS puzzle:

- SiC grain puzzle:

Ratio of the overabundant p-only isotopes ⁹²Mo & ⁹⁴Mo all 7 Mo isotopes with non-SS peculiar pattern

Mo isotopic abundances in the SS

			Lodders (2003)	De Laeter (2008)
Particularly "hot topic"		⁹² Mo	14.836	14.525
⁹² Mo/ ⁹⁴	Мо	⁹⁴ Mo	9.247	9.151
The two most abundant p-nuclei in the SS		⁹² Mo/ ⁹⁴ Mo	1.605	1.587

...despite all attempts / scenarios studied up to now,

⁹²Mo/⁹⁴Mo has remained an "unsolved problem"

M.J. Pellin et al., Lunar and Planetary Science XXXVII (2006) 2041:

Presolar SiC grains, isolated from primitive meteorites, are ejecta of stars that contributed to the protosolar nebula. Among these grains are a rare fraction, called **Type-X**, which are believed to have formed in the stellar outflows of SN II explosions.

^xMo deviation plotted relative to ⁹⁶Mo, which is taken as pure s-process isotope **⇒ "unusual isotopic pattern"** significant enrichment in ⁹⁵Mo, ⁹⁷Mo; smaller enrichment in ⁹⁸Mo; no clear signature of ¹⁰⁰Mo enhancement.

 $\boldsymbol{\delta}$ notation: deviation in permil from SS

HEW Mo isotopic abundances

All 7 isotopes are co-produced !

Zr isotopic abundances in the HEW

All 5 stable Zr isotopes are co-produced !

Ru isotopic abundances in the HEW

Again: All 7 stable Ru isotopes are co-produced !

Summary

- The HEW co-produces the historical p-, s- and r-isotopes of Zr, Mo and Ru (in fact: from Zn to Ru) within its charged-particle component
 → no classical n-capture process required !
- The HEW charged-particle component can obviously also explain the isotopic anomalies of Zr, Mo and Ru measured so far in presolar dust grains
- More heavy element measurements of stardust samples are needed !
- <u>Finally</u>: The HEW is the only scenario which can co-produce all Zr, Mo and Ru isotopes && reproduce the measured isotopic ratios from SiC-X grains && also reproduce the SS value ⁹²Mo/⁹⁴Mo

(also see Farouqi et al., PASA 26 (2009) 194 – 202)