Understanding the Sun with neutrinos: results from the Borexino experiment

Marianne Göger-Neff Technische Universität München Russbach, 13.03.2013

Outline

Motivation: solar neutrinos neutrino oscillations

Borexino: the detector signal and background

Solar neutrino results: 7Be 8B pep and CNO Future plans

Conclusion

The Sun

energy production by nuclear fusion (hydrogen burning)

 $4p \rightarrow {}^{4}He + 2e^{+} + 2v_{e} + 26.7 \text{ MeV}$

predict solar neutrino flux from solar luminosity: 1370 W/m² (at earth) => 6.5 x 10¹⁰v/cm² s

light (photons) takes 10⁵- 10⁶ years from core to surface

neutrinos escape from the core real-time information from the solar core (~ 8 minutes delay)

Nuclear reactions in the solar core

pp cycle

CNO cycle

<1% of energy poorly known not directly measured yet

The Standard Solar Model

The SSM is the theoretical framework which is used to make predictions on the solar neutrino fluxes.

The <u>Standard Solar Model</u>

The SSM is the theoretical framework which is used to make predictions on the solar neutrino fluxes.

Recent improvements in the SSM (>2004):

- new determination of ¹⁴N(p,γ)¹⁵O cross section reduced CNO fluxes by a factor ~2
- a factor of 2 better accuracy for ${}^{3}\text{He}({}^{4}\text{He},\gamma){}^{7}\text{Be cross section}$
- new opacities calculations
- more accurate solar surface abundancies
- improved 3D models
- \Rightarrow suggest lower metallicity Z

Prediction of Solar Neutrino Fluxes

	high Z	low Z	
Source	Neutrino Flux [cm ⁻² s ⁻¹] SSM-GS98	Neutrino Flux [cm ⁻² s ⁻¹] SSM-AGS09	Difference [%]
рр	5.98(1±0.006)×10 ¹⁰	6.03(1±0.006)×10 ¹⁰	0.8
рер	1.44(1±0.012)×10 ⁸	1.47(1±0.012)×10 ⁸	2.1
⁷ Be	5.00(1±0.07)×10 ⁹	4.56(1±0.07)×10 ⁹	8.8
⁸ B	5.58(1±0.13)×10 ⁶	4.59(1±0.13)×10 ⁶	17.7
¹³ N	2.96(1±0.15)×10 ⁸	2.17(1±0.15)×10 ⁸	26.7
¹⁵ O	2.23(1±0.16)×10 ⁸	1.56(1±0.16)×10 ⁸	30.0
¹⁷ F	5.52(1±0.18)×10 ⁶	3.40(1±0.16)×10 ⁶	38.4
CNO total	5.24 x 10 ⁸	3.76 x 10 ⁸	28.3

But: low Z models are in conflict with helioseismology (R_{CZ} , Y_{surf})

Can solar neutrino measurements decide?

The Solar neutrino problem

Objective of the first solar neutrino experiment:

"...to see into the interior of a star and thus verify directly the hypothesis of nuclear energy generation in stars." (Bahcall, PRL 12, 300, 1964)

Experiment	Data/ SSM
Homestake (v _e + ³⁷ Cl-> ³⁷ Ar+e)	0.34±0.03
Sage + Gallex (v _e + ⁷¹ Ga-> ⁷¹ Ge+e)	0.56±0.04
Superkamiokande (v _x +e->v _x +e)	0.46±0.02

finally solved by the SNO experiment:

CC: $v_e + d \rightarrow p + p + e^-$ NC: $v_x + d \rightarrow p + n + v_x$

$$\frac{\varphi_{\text{SNO}}^{\text{NC}}}{\varphi_{\text{SSM}}} = 1.01 \pm 0.12$$

solar neutrino flux is compatible with SSM

neutrinos undergo flavor conversion: neutrino oscillations

Solar Neutrino Oscillations in Vacuum

 Solar neutrino oscillations are well approximated by 2-flavor mixing:

$$\left(\begin{array}{c}\nu_e\\\nu_\mu\end{array}\right) = \left(\begin{array}{cc}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{array}\right) \left(\begin{array}{c}\nu_1\\\nu_2\end{array}\right)$$

 Only v_e are produced in solar fusion and detected by (most) experiments. In vacuum, the survival probability is

$$P_{ee} = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

• Due to the large distance and loss of coherence, P_{ee} takes an average of $P_{ee} = 1 - \frac{1}{2} \sin^2 2\theta \approx 0.6$

- ν_e, ν_μ : flavor eigenstates
- ν_1, ν_2 : mass eigenstates
 - $\theta_{12}:$ mixing angle
- Δm^2_{12} : mass squared difference

Solar Neutrino Oscillations in Matter

Matter is made of e^{-} (no μ , τ)

- coherent v-e⁻ scattering affects oscillations
- $\mathbf{v}_{\mathbf{e}}$ interactions different from $v_{\mu'\tau}$
- *"effective potential"* for v_e different from $v_{\mu'\tau}$ (Wolfenstein, '78)

Resonance effect (Mikheyev & Smirnov, 1985)

• adiabatic conversion in matter with slowly varying density

MSW Effect in the Sun:

- Low energy neutrinos (pp v) \rightarrow oscillations as in vacuum $P_{ee} \approx 1 - \frac{1}{2} \sin^2 2\theta \approx 0.6$
- High energy neutrinos (⁸B v) → matter enhanced oscillations

 $P_{ee} \approx sin^2 \theta \approx 0.3$

• **Transition region** between 1-4MeV

The MSW – LMA oscillation scenario

Large Mixing Angle

Solar Neutrinos: what next?

 real-time spectroscopy of low energy neutrinos: ⁷Be, pep, CNO, pp (99% of solar neutrino flux is < 1 MeV)

Cerenkov-experiments (SNO, SuperK) < 10⁻⁴ of the total solar neutrino flux

Solar Neutrinos: what next?

- real-time spectroscopy of low energy neutrinos: ⁷Be, pep, CNO, pp (99% of solar neutrino flux is < 1 MeV)
- neutrino physics:

test transition region MSW to vacuum oscillations (1 - 4 MeV)

- precision measurement θ_{12} , Δm_{21}^2
- Non-Standard Interactions
- solar physics:
 - high Z/ low Z SSM
 - test luminosity constraint $L_{\nu} = L_{\odot}$
 - determination of CNO: important for heavy stars

Borexino Collaboration

Dubna JINR (Russia)

Kurchatov Institute (Russia)

Jagiellonian U. Cracow (Poland)

Heidelberg (Germany)

Munich (Germany)

Borexino: Detector Location

INFN: Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy

~3500 m.w.e

The Borexino Detector

taking data since May 2007

Borexino: detection principle

• elastic scattering on electrons in organic liquid scintillator

- detection via scintillation light:
 - + low energy threshold
 - + good energy & position resolution

but:

- no direction measurement
- no distinction of v induced events
 from other β events

 \Rightarrow extreme radiopurity of the scintillator required

shielding, material selection, purification

Radiopurity constraints

No specific signature of neutrino events except recoil energy of scattered e⁻ => Background suppression is crucial

Intrinsic contamination of the liquid scintillator :

Background	Typical abundance (source)	Goal	Measured
¹⁴ C/ ¹² C	10 ⁻¹² (cosmogenic) g/g	~ 10 ⁻¹⁸ g/g	~ 2 x 10 ⁻¹⁸ g/g
²³⁸ U	2 x10 ⁻⁵ (dust) g/g	10 ⁻¹⁶ g/g	(1.6 <u>+</u> 0.1) x 10 ⁻¹⁷ g/g
(by ²¹⁴ Bi- ²¹⁴ Po)			< 9.7 x 10 ⁻¹⁹ g/g (2012)
²³² Th	2 x 10 ⁻⁵ (dust) g/g	10 ⁻¹⁶ g/g	(5 <u>+</u> 1) x 10 ⁻¹⁸ g/g
(by ²¹² Bi- ²¹² Po)			< 2 x 10 ⁻¹⁸ g/g (2012)
²¹⁰ Po	Surface contamination	~1 c/day/t	2007: 70 c/d/t
			2012: 4 c/d/t
⁴⁰ K	2 x 10 ⁻⁶ (dust) g/g	~10 ⁻¹⁸ g/g	< 3 x 10 ⁻¹⁸ (90%) g/g
⁸⁵ Kr	1 Bq/m ³ (air)	~1 c/d/100t	(28 <u>+</u> 7) c/d/100t < 6 c/d/100t (2012)
³⁹ Ar	17 mBq/m³ (air)	~1 c/d/100t	<< ⁸⁵ Kr

Detector Calibration (2009)

Detector response vs position:

- 100 Hz ¹⁴C+²²²Rn in scintillator in
 - ~ 200 positions

Quenching and energy scale:

- Beta: ¹⁴C, ²²²Rn in scintillator
- Alpha: ²²²Rn in scintillator
- Gamma: ¹³⁹Ce, ⁵⁷Co, ⁶⁰Co, ²⁰³Hg,
 ⁶⁵Zn, ⁴⁰K, ⁸⁵Sr, ⁵⁴Mn
- Neutron: AmBe

Borexino Expected Solar v Spectrum

Spectrum with irreducible backgrounds:

Data reduction

Precision measurement of ⁷Be neutrino rate

740 live days

- A spectral fit is applied including the following signal + all intrinsic back ground components.
 - ⁷Be, ⁸⁵Kr, ¹⁴C, ¹¹C
 - ²¹⁰Bi (very similar to CNO in this limited energy region)
 - pp, pep, ⁸B, and CNO neutrinos fixed at SSM-LMA value
- Fit with and without statistical subtraction of ²¹⁰Po events, based on α/β pulse shape discrimination.
- Two independent ways (MC based and analytical) were applied.

Precision measurement of ⁷Be neutrino rate

Systematics

Source	[%]
Trigger efficiency and stability	< 0.1
Live time	0.04
Scintillator density	0.05
Sacrifice of cuts	0.1
Fiducial volume	$^{+0.5}_{-1.3}$
Fit methods	2.0
Energy response	2.7
Total Systematic Error	$^{+3.4}_{-3.6}$

740 live days

combined error: 4.5%

Phys. Rev. Lett. 107, (2011) 141302

Implications of the ⁷Be measurement

- electron equivalent flux (862 keV line): (2.78 ± 0.13) x 10⁹ cm⁻² s⁻¹ no oscillation excluded @ 5.0 σ
- assuming MSW-LMA:

$$f_{7Be} = \phi / \phi_{SSM} = 0.97 \pm 0.09$$

• including all solar experiments + luminosity constraint:

 $f_{pp} = 1.013 + 0.003_{-0.010}$ $f_{CNO} < 1.7\% (95 \% C.L.)$

Absence of day-night asymmetry for ⁷Be v

Phys. Lett. B 707, 22-26, 2012

MSW: a possible regeneration of electron neutrinos in the matter (within the Earth during night): effect depends on the oscillation parameters and on energy

 $A_{DN} = 0.001 \pm 0.012(stat) \pm 0.007(syst)$

- in agreement with MSW-LMA;
- LOW region excluded at > 8.5 σ with solar neutrinos only: for the first time without the use of reactor antineutrinos (KamLAND) and the assumption of CPT symmetry

$$A_{dn} = 2\frac{R_N - R_D}{R_N + R_D} = \frac{R_{\text{diff}}}{\langle R \rangle}$$

Low threshold measurement of the ⁸B solar v

Borexino energy spectrum after muon subtraction: 246 live days

Borexino threshold: 2.8 MeV

Expected (MSW-LMA) count rate due to ⁸B neutrinos above 2.8 MeV:

0.26±0.03 c/d/100 tons

Major background sources:

- Muons
- Gammas from neutron capture
- Radon emanation from the nylon vessel
- Short lived (t < 2 s) cosmogenic isotopes
- Long lived (t > 2 s) cosmogenic isotopes (¹⁰C)
- Bulk ²³²Th contamination (²⁰⁸Tl)

Signal/Background (>2.8 MeV): ~ 1/6000

Low threshold measurement of the 8B solar v

	3.0-16.3 MeV	5.0-16.3 MeV
Rate [c/d/100 t]	$0.22 \pm 0.04 \pm 0.01$	0.13±0.02± 0.01
Φ^{ES}_{exp} [10 ⁶ cm ⁻² s ⁻¹]	2.4±0.4 ±0.1	$2.7 \pm 0.4 \pm 0.2$
$\Phi^{\rm ES}{}_{\rm exp}\!/\!\Phi^{\rm ES}{}_{\rm th}$	0.88±0.19	1.08 ± 0.23

⁷Be and ⁸B flux measured with the same detector

Borexino ⁸B flux above 5 MeV agrees with existing data (SNO, SuperK)

Neutrino oscillation is confirmed at 4.2 σ

The first pep v measurement

Phys. Rev. Lett. 108 (2012) 051302

Expected pep interaction rate: 2-3 cpd/100t

Main background: $$^{11}C$, ^{210}Bi, external <math display="inline">\gamma$$

²¹⁰Bi and CNO: very similar spectral shape

CNO

¹¹C reduction:

- Three Fold Coincidence (muon + neutron + C11)
- Novel pulse shape discrimination: e⁺ /e⁻ discrimination

(D. Franco et al., Phys. Rev. C 015522 (2011))

Multivariate analysis:

- fit of the energy spectra
- fit the radial distribution of the events (external γ background is not uniform)
- fit the pulse shape parameter

¹¹C reduction: Threefold coincidence (TFC)

pep and CNO neutrinos: results

pep neutrinos:

- Rate: 3.1 ± 0.6_(stat) ± 0.3_(sys) cpd/100 t
- $\Phi_{pep} = (1.6 \pm 0.3) \times 10^8 \text{ cm}^{-2} \text{ s}^{-1}$
- No oscillations excluded at 97% C.L.
- Absence of pep solar v excluded at 98%

CNO neutrinos:

- only limits, strong correlation with ²¹⁰Bi
- CNO limit obtained assuming pep @ SSM
 CNO rate < 7.1 cpd/100 t (95% c.l.)
- $\Phi_{CNO} < 7.7 \ 10^8 \ cm^{-2} \ s^{-1}$ (95% C.L.)
- the strongest limit to date
- not sufficient to resolve metallicity problem

Phys. Rev. Lett. 108 (2012) 051302

Physics implication of the Borexino results

MSW-LMA confirmed (7Be,pep and 8B measurement)

LOW excluded (solar only) by day-night-asymmetry

Predicted vs. measured solar neutrino fluxes

Source	Flux [cm ⁻² s ⁻¹] SSM-GS98	Flux [cm ⁻² s ⁻¹] SSM-AGSS09	Measured Flux [cm ⁻² s ⁻¹] global analysis
рр	5.98(1±0.006)×10 ¹⁰	6.03(1±0.006)×10 ¹⁰	6.05(1±0.01)×10 ¹⁰
рер	1.44(1±0.012)×10 ⁸	1.47(1±0.012)×10 ⁸	1.46(1±0.014)×10 ⁸
⁷ Be	5.00(1±0.07)×10 ⁹	4.56(1±0.07)×10 ⁹	4.82(1±0.05)×10 ⁹
⁸ B	5.58(1±0.13)×10 ⁶	4.59(1±0.13)×10 ⁶	5.00(1±0.03)×10 ⁶
¹³ N	2.96(1±0.15)×10 ⁸	2.17(1±0.15)×10 ⁸	
¹⁵ O	2.23(1±0.16)×10 ⁸	1.56(1±0.16)×10 ⁸	
¹⁷ F	5.52(1±0.18)×10 ⁶	3.40(1±0.16)×10 ⁶	
CNO total	5.24 x 10 ⁸	3.76 x 10 ⁸	< 7.7 x 10 ⁸

high metallicity

low metallicity

metallicity problem can not be resolved with present data

Borexino: phase 2 (2012 – 2015)

Goals (solar neutrinos):

- reach 3σ significance of pep signal (reduce ²¹⁰Bi background)
- measure ⁷Be neutrinos to 3% (reduce ⁸⁵Kr and ²¹⁰Bi backgrounds)
- improve ⁸B measurement with low energy threshold (statistics)

=> test MSW

• improve limit on CNO neutrinos (reduce ²¹⁰Bi background!)

=> probe metallicity

 direct detection of pp neutrinos (very challenging, need to improve knowledge on ¹⁴C spectrum and pile-up effects)

²¹⁰Bi and ²¹⁰Po in Borexino

- ²¹⁰Po not in equilibrium
- not a surprise: seen in the CTF (prototype)
- origin not clear (surface contamination of filling tubes ?)
- introduced Po210 with every operation
- now at ~ 3.5 c/d/t

200

400

600

800

1000

1200

1400

Astronomical time, days

1600

CNO Neutrino Measurement

Main background: ²¹⁰Bi, β-decay similar spectral shapes

Strategy suggested by Villante et al. (Phys.Lett.B701:336-341,2011):

Constraining ²¹⁰Bi rate looking at time evolution of ²¹⁰Po decay rate:

²¹⁰Po R(t=0) = 2000 cpd/100 t M = 100 ton $\Delta t = 1$ year

Conclusions

- Phase 1 of the Borexino experiment successfully concluded
 - First detection and 5% measurement of solar ⁷Be neutrinos
 - ⁸B-ν at low energy (>3 MeV), ⁷Be-ν day-night
 - First detection of pep solar neutrinos
- Scintillator purification was successful, and Phase 2 is starting
 - rich program on solar neutrino physics:
 - probe MSW through ⁸B at low energy, pep and more precise ⁷Be
 - attempt to detect pp in real time
 - possible interesting upper limit on CNO, probe solar metallicity
 - on our wish list: a galactic Supernova

Borexino References

• Solar neutrino results

- ⁷Be evidence: PhysLett B658 101-108 (2008)
- ⁷Be at 10% + f_{pp}/f_{CNO}: PhysRevLett 101, 091302 (2008)
- Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3MeV energy threshold in the Borexino detector, PRD 82 (2010) 033006
- Precision measurement of the 7Be solar neutrino interaction rate in Borexino,
 Phys. Rev. Lett. 107, 141302, 2012
- Absence of day-night asymmetry of 862 keB 7Be solar neutrinos in Borexino and MSW oscillation parameters, Phys. Lett. B 707, 22-26, 2012
- First evidence of pep solar neutrinos by direct detection in Borexino,
 Phys. Rev. Lett. 108, 051302, 2012

• Other physics:

- Observation of Geo-Neutrinos, Phys. Lett. B687, 299-304, 2012
- Cosmic muon flux and annual modulation in Borexino, JINST 1205, 015, 2012
- Measurement of CNGS muon neutrino speed with Borexino, Phys Lett B716, 401, 2012

• Search of rare processes

- Anti-neutrinos from unknown sources, PLB 696 (2011) 191-196
- Limits on Pauli forbidden transitions on 12C, PRC 81 (2010) 034317
- Search for solar axions from p(d,3He)a, PRD 85 (2012) 092003

more interesting results to come

Thank you for the attention!