

Doppler Shift Attenuation Method: The experimental setup at the MLL and the lifetime measurement of the 1st excited state in ³¹S

Clemens Herlitzius TU München (E12) Prof. Shawn Bishop

Doppler Shift Attenuation Method: The experimental setup at the MLL and the lifetime measurement of the 1st excited state in ³¹S

- 1. Motivation
- 2. Method, setup and experiment
- 3. Analysis: simulation and line shape calculation
- 4. Results and conclusion

1. Motivation

classical nova illustration

- H-rich material accumulates on surface of white dwarf (C/O or O/Ne core)
- energy production via pp-chain (e~T⁴)
- CNO sets in (e~T¹⁷) pressure overcomes degeneracy
 → ejection of the envelope
- proton capture up to A=40
- competition: p-capture / b decay

1. Motivation

1. Thermonuclear Resonant Reaction Rate

$$\langle \sigma v \rangle = \left(\frac{8}{\pi \mu}\right)^{1/2} (kT)^{-3/2} \int_{0}^{\infty} E \sigma(E) \exp\left(\frac{-E}{kT}\right) dE$$

$$\langle \sigma v \rangle = \left(\frac{2\pi}{\mu kT}\right)^{3/2} \hbar^{2} \sum_{i} \omega \gamma_{i} \exp\left(\frac{-E_{i}}{kT}\right)$$

resonance strength
$$\omega \gamma_{i} = \frac{2J_{i} + 1}{(2J_{p} + 1)(2J_{X} + 1)} \frac{\Gamma p \Gamma \gamma}{\Gamma p + \Gamma \gamma}$$

$$= g(1 - B_{p}) B_{p} \frac{\hbar}{\tau_{i}}$$

$$= g(1 - B_{\gamma}) B_{\gamma} \frac{\hbar}{\tau_{i}}$$

life time

μ - reduced mass

$$J_i, J_p, J_X$$
 – Spins of: resonance state/
projectile/ target
T – temperature
 E_i – relative energy of state (to Q)
 Γ_p, Γ_γ – partial width of p- / γ- decay
 $B_p = \Gamma_p/\Gamma$ – branching ratio

2. Lifetime measurements

2. Doppler Shift Attenuation Method

$$E_{\gamma}^{obs} = E_{\gamma}^{0} \frac{\sqrt{1-\beta^{2}}}{1-\beta\cos\alpha} \approx E_{\gamma}^{0} (1+\beta\cos\alpha)$$

2. Doppler Shift Attenuation Method

$$E_{\gamma}^{obs} = E_{\gamma}^{0} \frac{\sqrt{1-\beta^{2}}}{1-\beta\cos\alpha} \approx E_{\gamma}^{0} (1+\beta\cos\alpha)$$

Reaction:	³² S(³ He, ⁴ He) ³¹ S*		
Beam:	³² S at 85 MeV		
Target:	³ He implanted Au (stops ³¹ S)		
Recoils:	³¹ S with E _{ex} = 1.25 MeV ⁴ He for PID & coinc.		

2. Commissioning experiment:³²S(³He,⁴He)³¹S*

Features: beam diagnostic

- mini cup with suppressing voltage
- optional collimator in Cu tube
- CsI crystal for visual diagnostic

Features: target ladder

- 5+2 positions
- linear translator
- rotation angle 54°
- coolable to T = -100 °C

Features: Silicon telescopes

- [¥] E/E (50 μ m/1mm) for PID
- polar angles: $25^{\circ} < \boxed{M} < 60^{\circ}$
- distance: 32 mm
- 20 🕅 20 mm²
- position sensitive

Technische Universität München

2. DSAM setup at the MLL

3. Analysis: Simulation and lineshape calculation

3.1 E_v background subtraction

3.1 E_{γ} spectra for lineshape analysis

3.2 Simulation of the stopping process: Geant4

3.2 Simulation of the stopping process: Geant4

3.2 Simulation of the stopping process: Geant4

3.3 Line shape analysis: APCAD

Analysis Program for Continuous Angle DSAM

• Christian Stahl, TU Darmstadt, AG Pietralla

Idea:

- 1. Simulate stopping process v_{ion}(t)
- 2. Determine observed Doppler Shift distribution $m_{det}(t)$
- 3. Assume lifetime and covolve it with $m_{det}(t)$
- 4. Fit experimental line shape by varying assumed lifetime

4. Results and error discussion

4. Conclusion and outlook

- Successful commissioning of the new DSAM setup at the MLL
- 1st excited state in ³¹S:

$$\tau = \left(964 \pm 19_{\text{stat}} \pm \frac{311}{89_{\text{syst}}}\right) \text{fs}$$

 The error is dominated by systematic uncertainties of the stopping power

Outlook:

- Neutron detector for access to additional reaction channels
- DAQ: digitizer
- Ice target (hydrogen target)
- Miniball @ MLL
- CRYRING @ GSI

5. Additional slides

5.1 previous measurements:

	τ	Δau	$\Delta au_{ m stat}$	$\Delta au_{ m syst}$
Engmann et al. 1970	720fs	180fs		20%
Doornenbal et al. 2012 A	1.2ps		0.7ps	+1.3 ps -0.9 ps
Doornenbal et al. 2012 B	3.2 ps		4.8ps	5.2ps
Tonev et al. 2011	624fs	24fs		10%

³²S(³He,⁴He)³¹S,7MeV, direct kinematic

2-step fragmentation, ⁴⁰Ca+⁹Be->³⁷Ca ³⁷Ca+⁹Be->³¹S Miniball,

Fusion evaporation, ²⁰Ne+¹²C->³¹S+n

5.2 feeding

5.2 Energy of ⁴He particles

5.3 Fusion evaporation

5.3 Fusion evaporation

Russbach, 13/03/13

2. Recoil-Distance Doppler Shift Method

$$E_{\gamma}^{obs} = E_{\gamma}^{0} \frac{\sqrt{1 - \beta^{2}}}{1 - \beta \cos \alpha} \approx E_{\gamma}^{0} (1 + \beta \cos \alpha)$$

$$N_{\text{shifted}} = \int_{t=0}^{t_{flight}} N_{\text{all}} \exp\left(-\frac{t}{\tau}\right)$$

Lehrstuhl E12

2. Recoil-Distance Doppler Shift Method

3.1 TDC gate

3.1 charged particle identification

3.1 charged particle identification

3.1 charged particle identification

3.1 PID α gate on E_v spectra

3.3 Projection on a HPGe detector

Observed Doppler shift is determined by the ion's velocity component in the direction of observation

$$E_{\gamma}^{obs} = E_{\gamma}^{0} \frac{\sqrt{1-\beta^{2}}}{1-\beta\cos\alpha}$$

$$\approx E_{\gamma}^{0}(1+\beta\cos\alpha)$$

$$E_{\gamma}^{obs} = E_{\gamma}^{0}(1+m)$$

$$m = \frac{E_{\gamma}^{0}}{E_{\gamma}^{obs}} - 1 = \frac{\sqrt{1-\beta^{2}}}{1-\beta\cos\alpha} - 1$$

3.3 Projection on a HPGe detector

3.3 Doppler Shift distribution: projection

3.3 Line shape modeling

3.3 Line shape modeling

3.3 Line shape modeling

3.3 Physical energy in the HPGe

3.3 HPGe detector response

