

Lecture #1: Nuclear and Thermonuclear Reactions

Prof. Christian Iliadis

THE UNIVERSITY f North Carolina t Chapel Hill

Nuclear Reactions

Definition of cross section:

 $\sigma \equiv$

(number of interactions per time)

(number of incident particles per area per time) (number of target nuclei within the beam) $N_0 N_t$

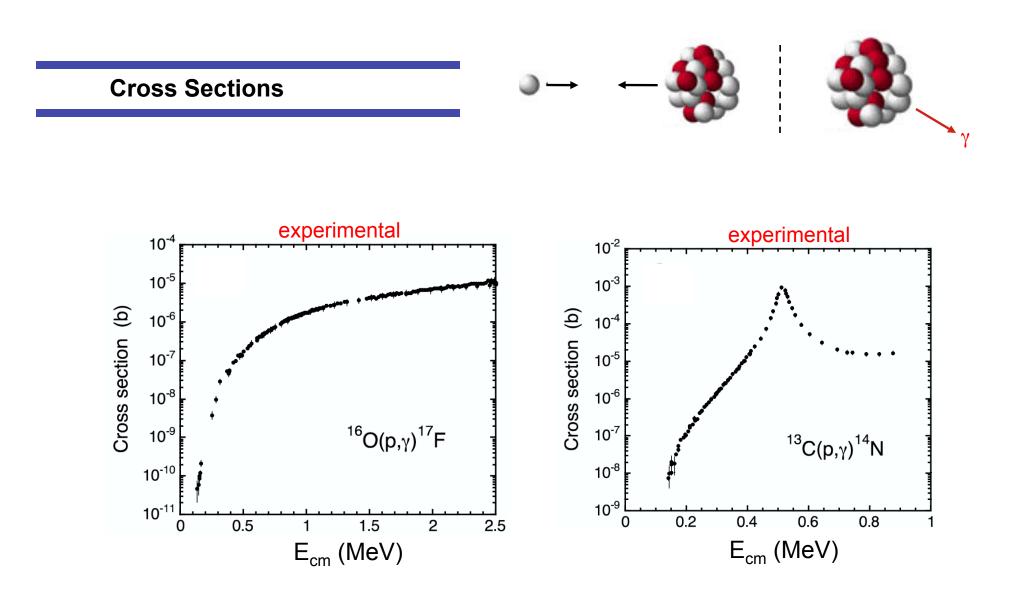
Unit: 1 barn=10⁻²⁸ m²

Example: ${}^{1}H + {}^{1}H \rightarrow {}^{2}H + e^{+} + v$ (first step of pp chain)

 σ_{theo} =8x10⁻⁴⁸ cm² at E_{lab}=1 MeV [E_{cm}=0.5 MeV]

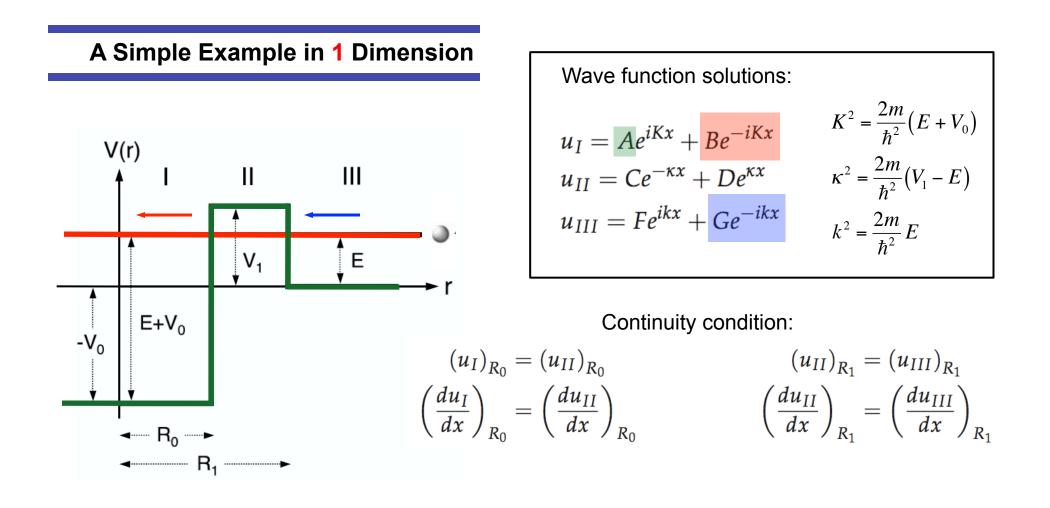
1 ampere (A) proton beam (6x10¹⁸ p/s) on dense proton target (10²⁰ p/cm²)

gives only 1 reaction in 6 years of measurement!



(i) why does the cross section fall drastically at low energies?

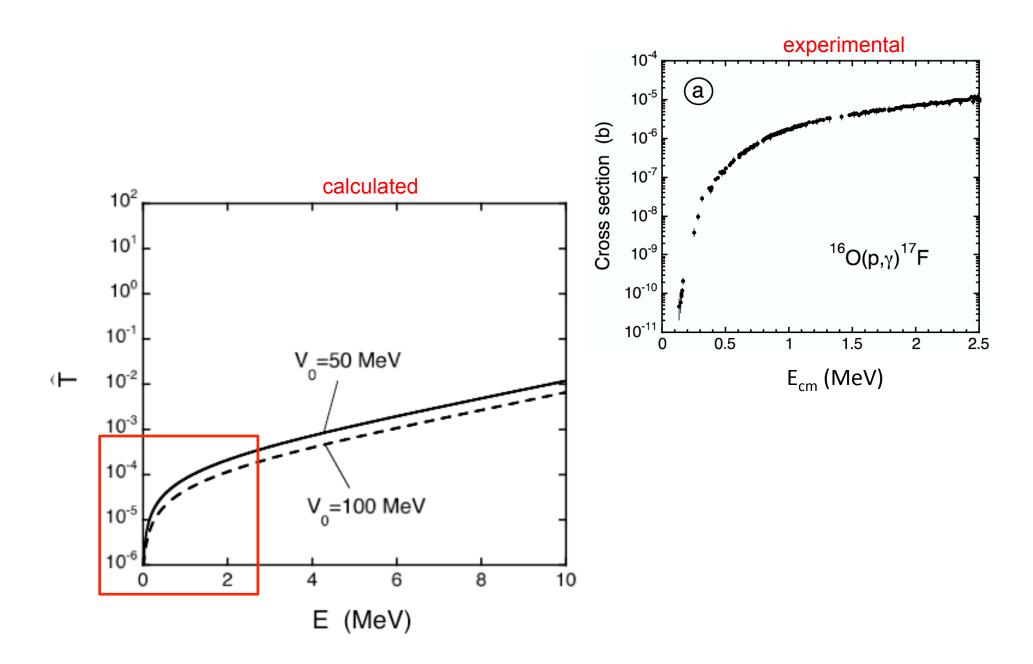
(ii) where is the peak in the cross section coming from?



Transmission coefficient:
$$\hat{T} = \frac{K}{k} \frac{|B|^2}{|G|^2} \approx e^{-(2/\hbar)} \sqrt{2m(V_1 - E)} (R_1 - R_0)$$

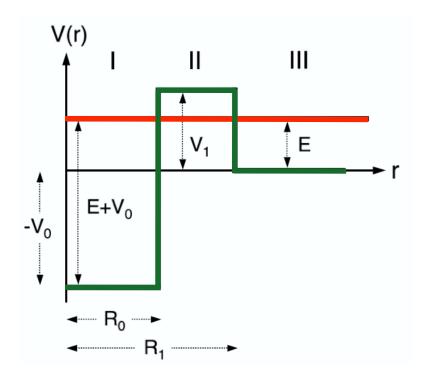
(after lengthy algebra, and for the limit of low E)

"Tunnel effect"



Tunnel effect is the reason for the strong drop in cross section at low energies!

Back to the Simple Potential, Now in 3 Dimensions



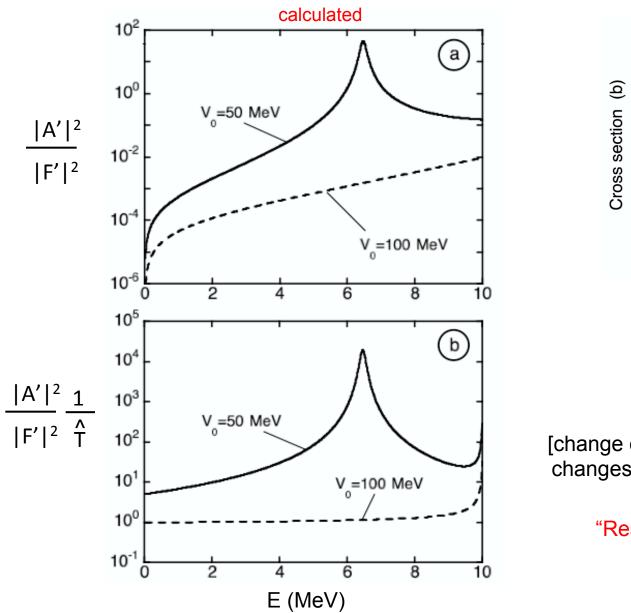
wave function solutions:

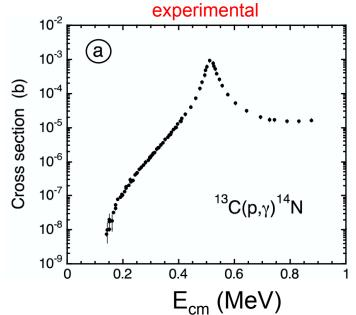
$$u_{I} = \mathbf{A}' \sin(\mathbf{K}\mathbf{r}) \qquad \qquad \mathbf{K}^{2} = \frac{2m}{\hbar^{2}} (E + V_{0})$$
$$u_{II} = \mathbf{C}e^{-\kappa \mathbf{r}} + \mathbf{D}e^{\kappa \mathbf{r}} \qquad \qquad \mathbf{\kappa}^{2} = \frac{2m}{\hbar^{2}} (V_{1} - E)$$
$$u_{III} = \mathbf{F}' \sin(\mathbf{k}\mathbf{r} + \delta_{0}) \qquad \qquad \mathbf{k}^{2} = \frac{2m}{\hbar^{2}} E$$

Continuity condition...

Wave intensity in interior region: (after very tedious algebra)

$$\frac{|A'|^2}{|F'|^2} = \left\{ \sin^2(KR_0) + \left(\frac{K}{k}\right)^2 \cos^2(KR_0) + \sin^2(KR_0) \sinh^2(\kappa\Delta) \left[1 + \left(\frac{\kappa}{k}\right)^2\right] + \cos^2(KR_0) \sinh^2(\kappa\Delta) \left[\left(\frac{K}{\kappa}\right)^2 + \left(\frac{K}{k}\right)^2\right] + \sin(KR_0) \cos(KR_0) \sinh(2\kappa\Delta) \left[\left(\frac{K}{\kappa}\right) + \left(\frac{K}{\kappa}\right)\left(\frac{\kappa}{k}\right)^2\right] \right\}^{-1} \right\}$$



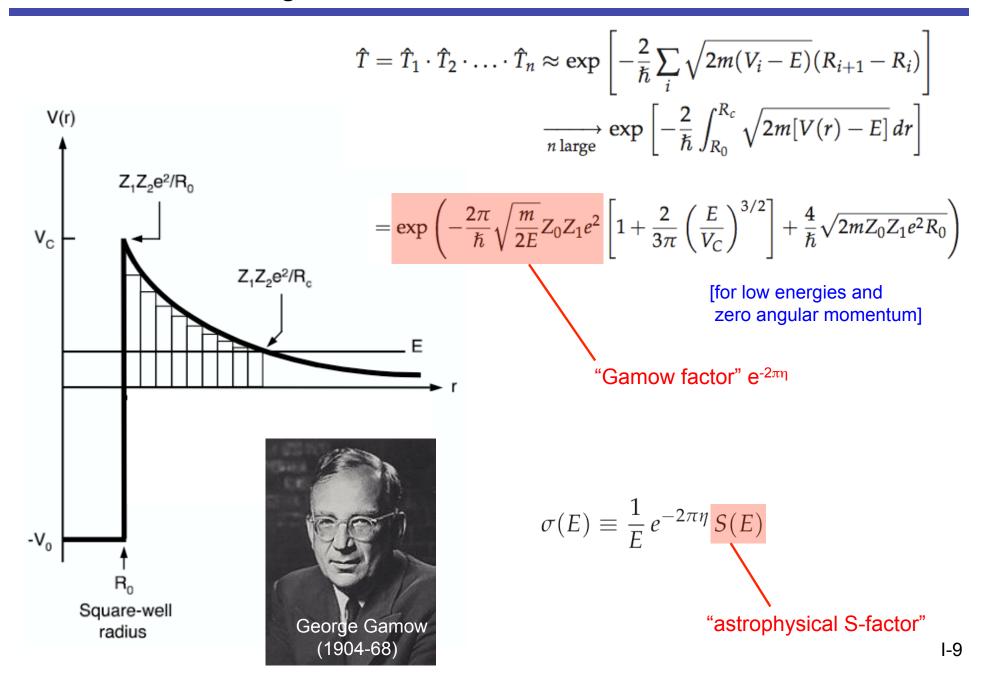


[change of potential depth V₀: changes wavelength in interior region]

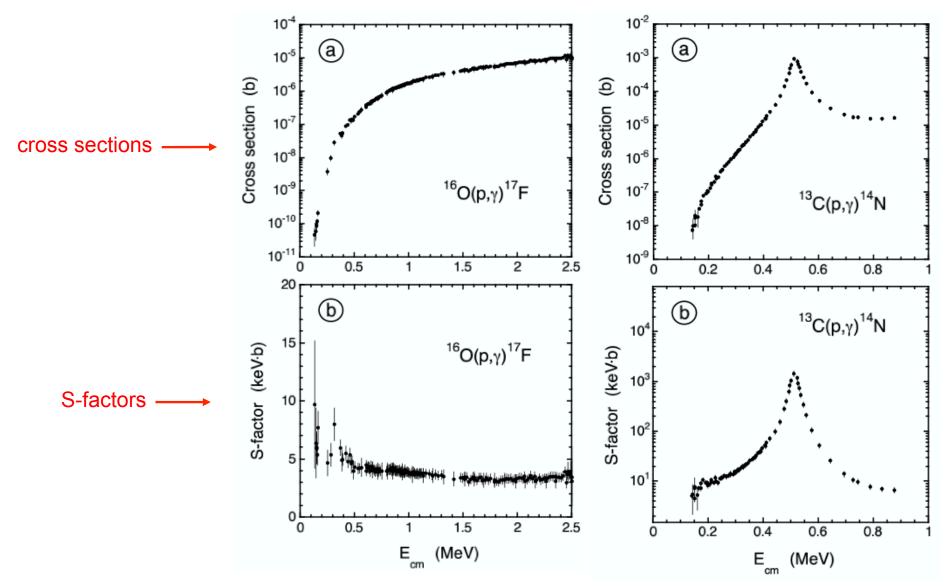
"Resonance phenomenon"

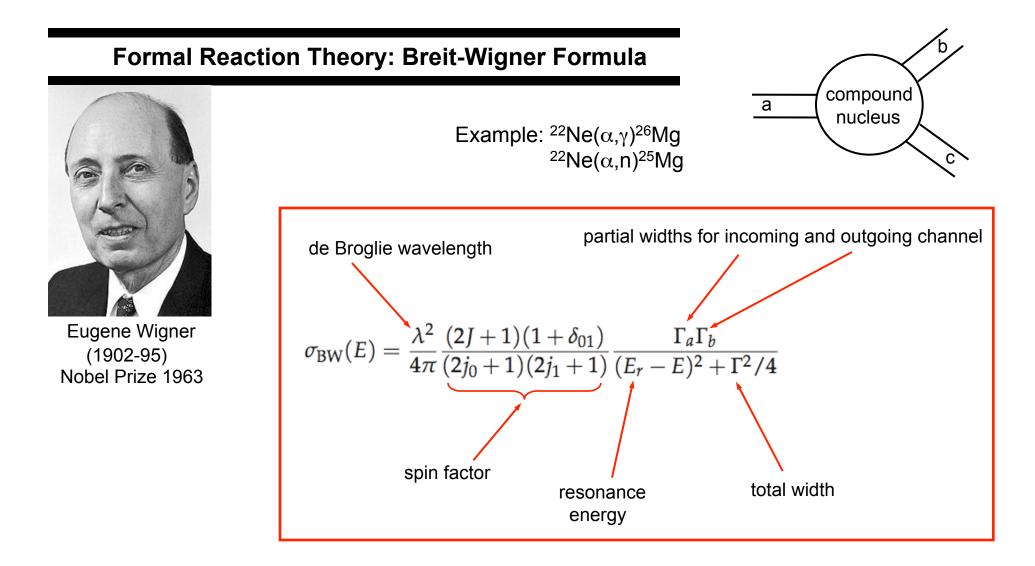
A resonance results from favorable wave function matching conditions at the boundaries!

Transmission Through the Coulomb Barrier



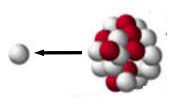
Comparison: S-Factors and Cross Sections





Used for: - for fitting data to deduce resonance properties

- for "narrow-resonance" thermonuclear reaction rates
- for extrapolating cross sections when no measurements exist
- for experimental yields when resonance cannot be resolved



probability per unit time for formation or decay of a resonance (in energy units)

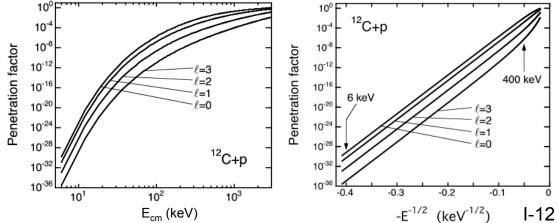
For protons/neutrons:

$$\Gamma_{\lambda c} = 2\gamma_{\lambda c}^2 P_c = 2\frac{\hbar^2}{mR^2} C^2 S \theta_{pc}^2 P_c$$

A partial width can be factored into 3 probabilities:

- C²S: probability that nucleons will arrange themselves in a "residual nucleus + single particle" configuration ["spectroscopic factor"]
- θ²: probability that single nucleon will appear on nuclear boundary
 ["dimensionless reduced single particle width"; Iliadis, Nucl. Phys. A 618, 166 (1997)]

$$P_{\ell} = R \left(\frac{k}{F_{\ell}^2 + G_{\ell}^2} \right)_{r=R}$$
$$\propto e^{-2\pi\eta} = e^{-const/\sqrt{E}}$$



Thermonuclear Reactions

For a reaction 0 + 1 \rightarrow 2 + 3 we find from the definition of σ (see earlier) a "reaction rate":

$$r_{01} = N_0 N_1 \int_0^\infty v P(v) \sigma(v) \, dv \equiv N_0 N_1 \langle \sigma v \rangle_{01}$$

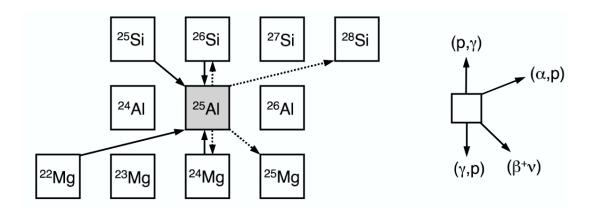
For a stellar plasma: kinetic energy for reaction derives from thermal motion:

"Thermonuclear reaction"

For a Maxwell-Boltzmann distribution:

$$\langle \sigma v \rangle_{01} = \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty E \sigma(E) e^{-E/kT} dE$$

Interplay of Many Different Nuclear Reactions in a Stellar Plasma



$$\frac{d(N_{25}_{Al})}{dt} = N_{H}N_{24}_{Mg}\langle \sigma v \rangle_{24}_{Mg(p,\gamma)} + N_{4}_{He}N_{22}_{Mg}\langle \sigma v \rangle_{22}_{Mg(\alpha,p)} \\ + N_{25}_{Si}\lambda_{25}_{Si(\beta^{+}\nu)} + N_{26}_{Si}\lambda_{26}_{Si(\gamma,p)} + \dots \\ - N_{H}N_{25}_{Al}\langle \sigma v \rangle_{25}_{Al(p,\gamma)} - N_{4}_{He}N_{25}_{Al}\langle \sigma v \rangle_{25}_{Al(\alpha,p)} \\ - N_{25}_{Al}\lambda_{25}_{Al(\beta^{+}\nu)} - N_{25}_{Al}\lambda_{25}_{Al(\gamma,p)} - \dots \end{cases} \right\}$$
destruction

System of coupled differential equations: "nuclear reaction network"

Solved numerically

[Arnett, "Supernovae and Nucleosynthesis", Princeton University Press, 1996]

Special Case #1: Rates for Smoothly Varying S-Factors ("non-resonant")

$$\sigma(E) \equiv \frac{1}{E}e^{-2\pi\eta}S(E)$$

$$N_A \langle \sigma v \rangle = \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{N_A}{(kT)^{3/2}} \int_0^{\infty} E \frac{\sigma(E)}{\sigma(E)} e^{-E/kT} dE$$

$$= \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{N_A}{(kT)^{3/2}} S_0 \int_0^{\infty} e^{-2\pi\eta} e^{-E/kT} dE$$
"Gamow peak"
Represents the energy range over which most nuclear reactions occur in a plasma!
Location and 1/e width of Gamow peak:
$$E_0 = \left[\left(\frac{\pi}{\hbar}\right)^2 (Z_0 Z_1 e^2)^2 \left(\frac{m_{01}}{2}\right) (kT)^2\right]^{1/3}$$

$$= 0.1220 \left(z_0^2 Z_1^2 \frac{M_0 M_1}{M_0 + M_1} T_9^2\right)^{1/6} (MeV)$$

$$\Delta = \frac{4}{\sqrt{3}} \sqrt{E_0 kT} = 0.2368 \left(z_0^2 Z_1^2 \frac{M_0 M_1}{M_0 + M_1} T_9^2\right)^{1/6} (MeV)$$

0

0

0.2

0.4

0.6

Energy (MeV)

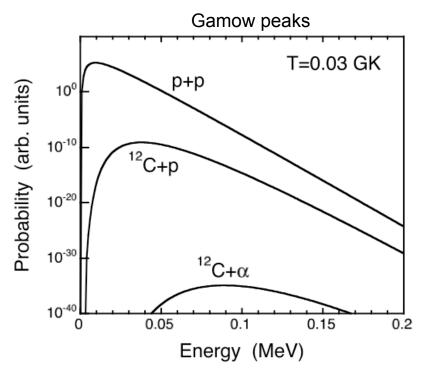
0.8

1

however, see: Newton, Iliadis et al., Phys. Rev. C 045801 (2007)

I-15

1.2

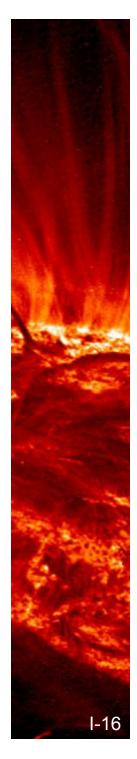


Important aspects:

(i) Gamow peak shifts to higher energy for increasing charges Z_p and Z_t

(ii) at same time, area under Gamow peak decreases drastically

Conclusion: for a mixture of different nuclei in a plasma, those reactions with the smallest Coulomb barrier produce most of the energy and are consumed most rapidly [→ stellar burning stages, see Lecture #2]



Special Case #2: Rates for "Narrow" Resonances (" Γ_i const over total Γ ")

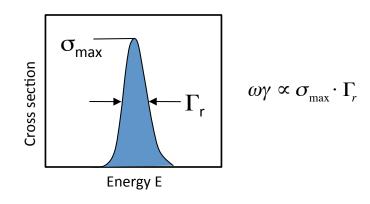
Breit-Wigner formula (energy-independent partial widths)

$$N_A \langle \sigma v \rangle = \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{N_A}{(kT)^{3/2}} \int_0^\infty E \,\sigma(E) \, e^{-E/kT} \, dE$$

$$= N_A \frac{\sqrt{2\pi}\hbar^2}{(m_{01}kT)^{3/2}} e^{-\frac{E_r}{kT}} \omega \frac{\Gamma_a \Gamma_b}{\Gamma} 2\pi$$

resonance energy needs to be known rather precisely

• takes into account only rate contribution at E_r



"resonance strength" ωγ:

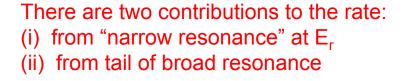
- proportional to area under narrow resonance curve
- energy-dependence of $\boldsymbol{\sigma}$ not important

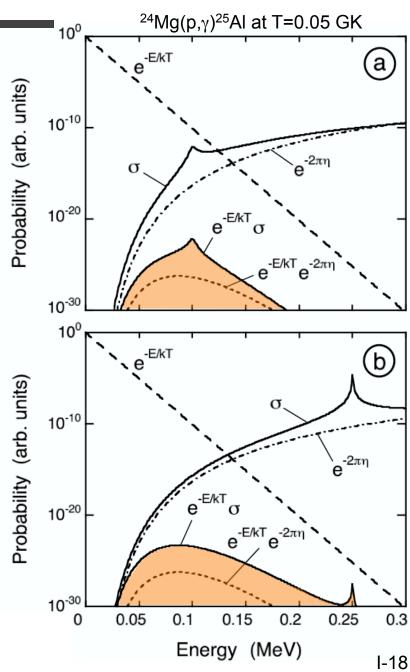
Special case #3: Rates for "Broad Resonances"

Breit-Wigner formula (energy-**dependent** partial widths)

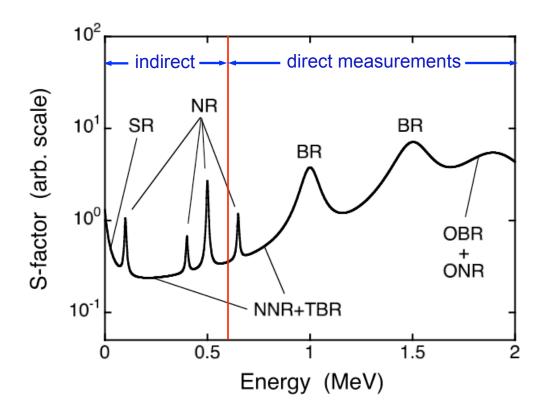
$$N_A \langle \sigma v \rangle = \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{N_A}{(kT)^{3/2}} \int_0^\infty E \sigma(E) e^{-E/kT} dE$$

rate can be found from numerical integration





Total Thermonuclear Reaction Rate



Need to consider:

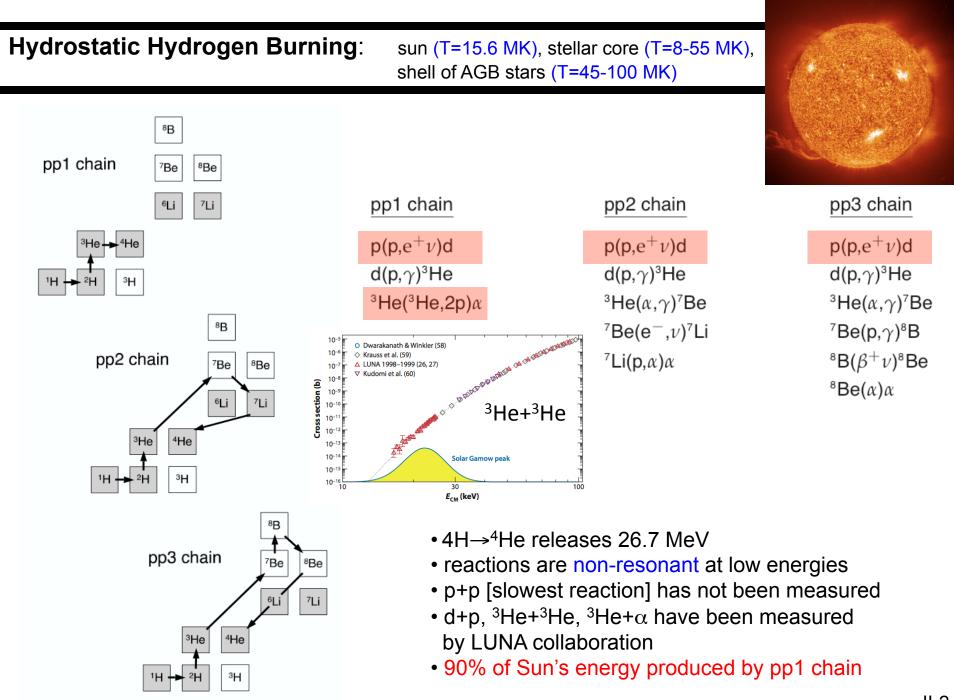
- non-resonant processes
- narrow resonances
- broad resonances
- subthreshold resonances
- interferences
- continuum

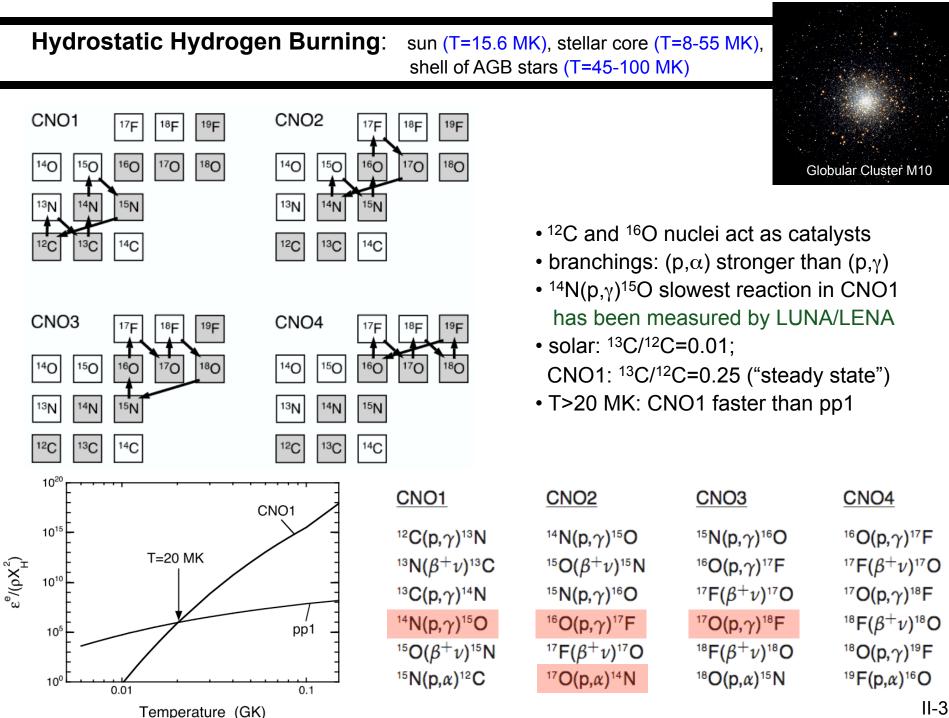
every nuclear reaction represents a special case !

Lecture #2: Nuclear Burning Stages [excl. explosive burning]

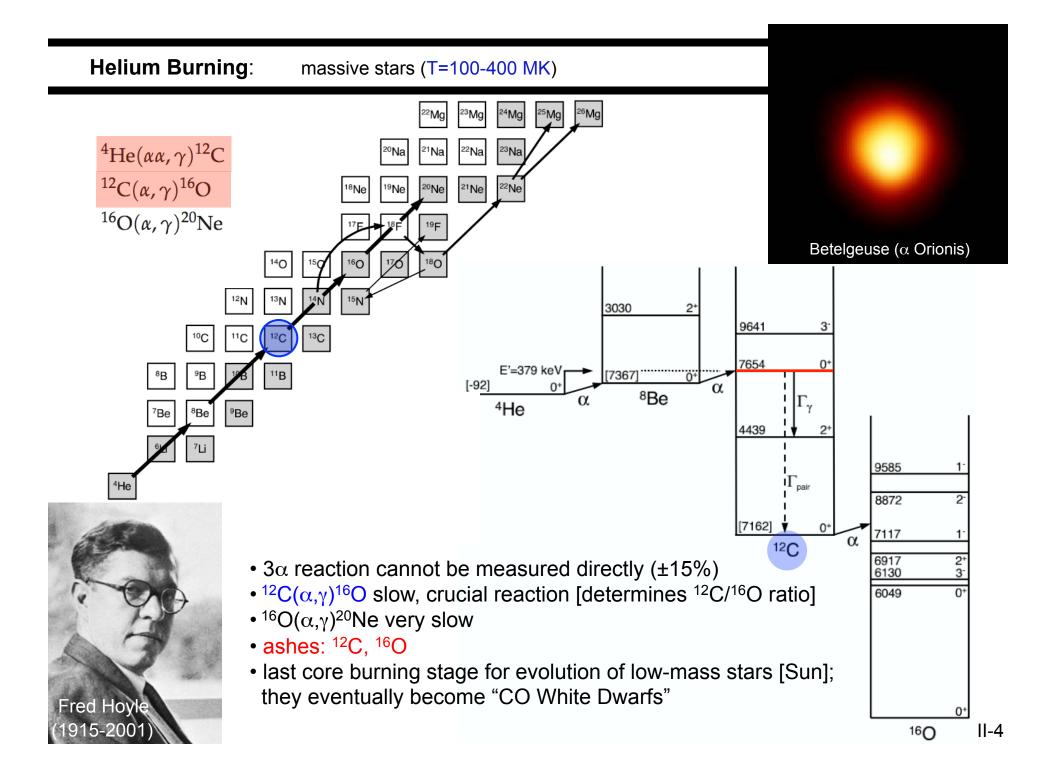
Prof. Christian Iliadis

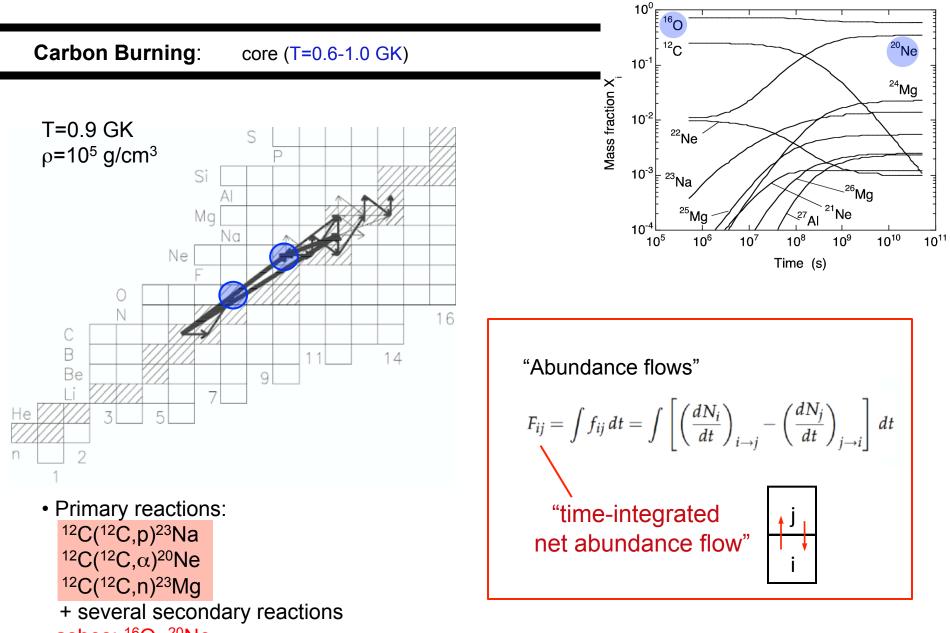
THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



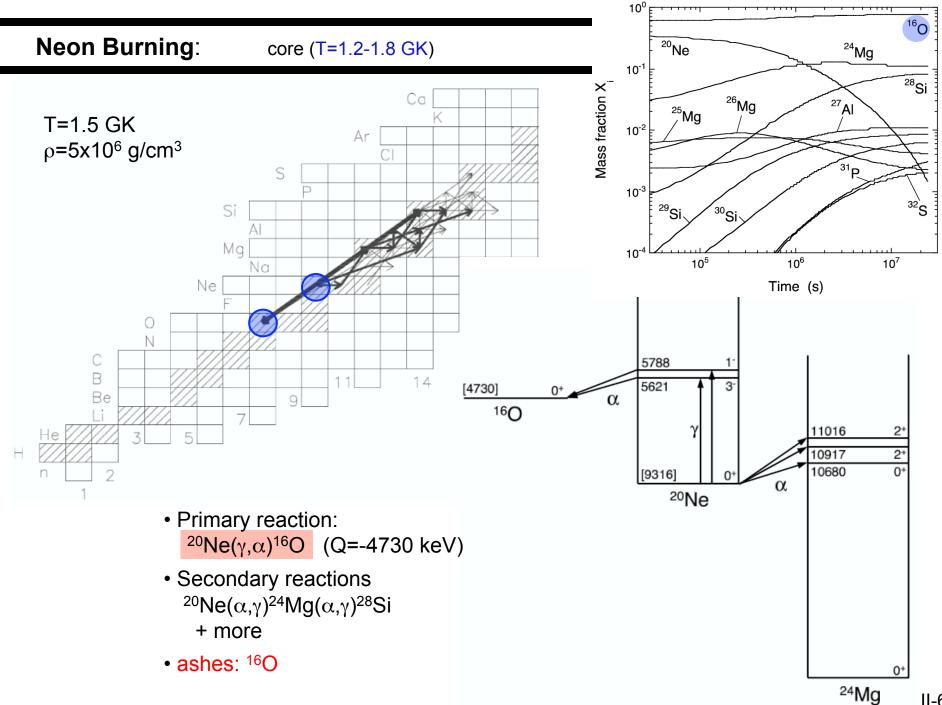


II-3

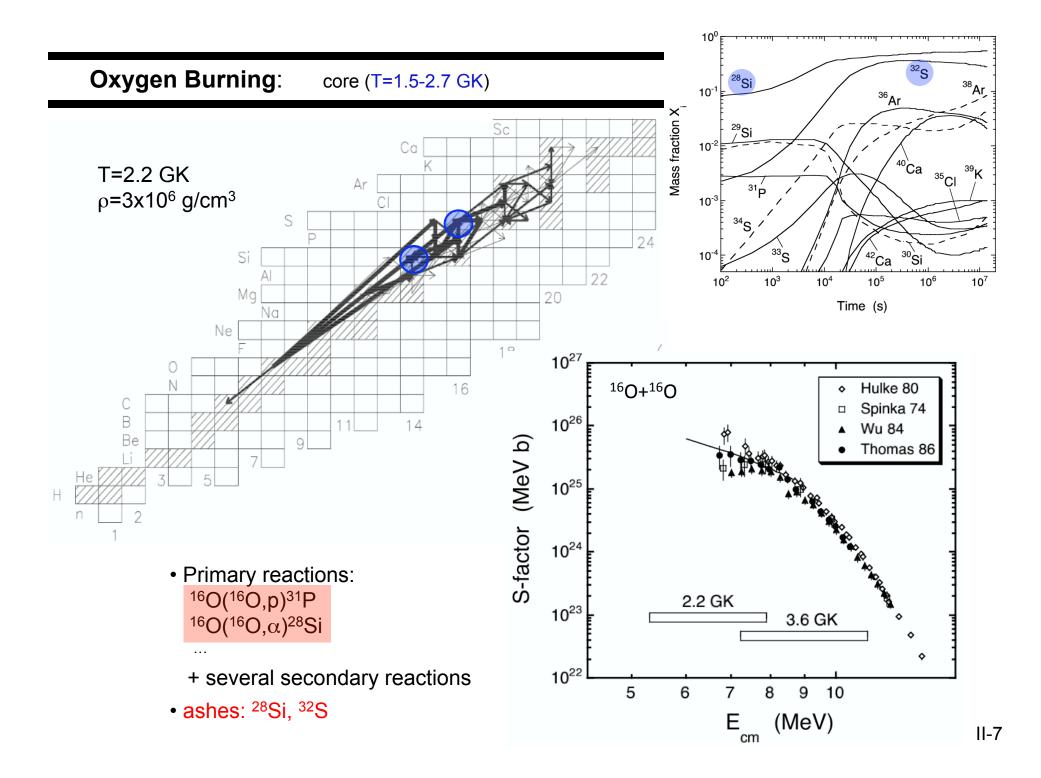


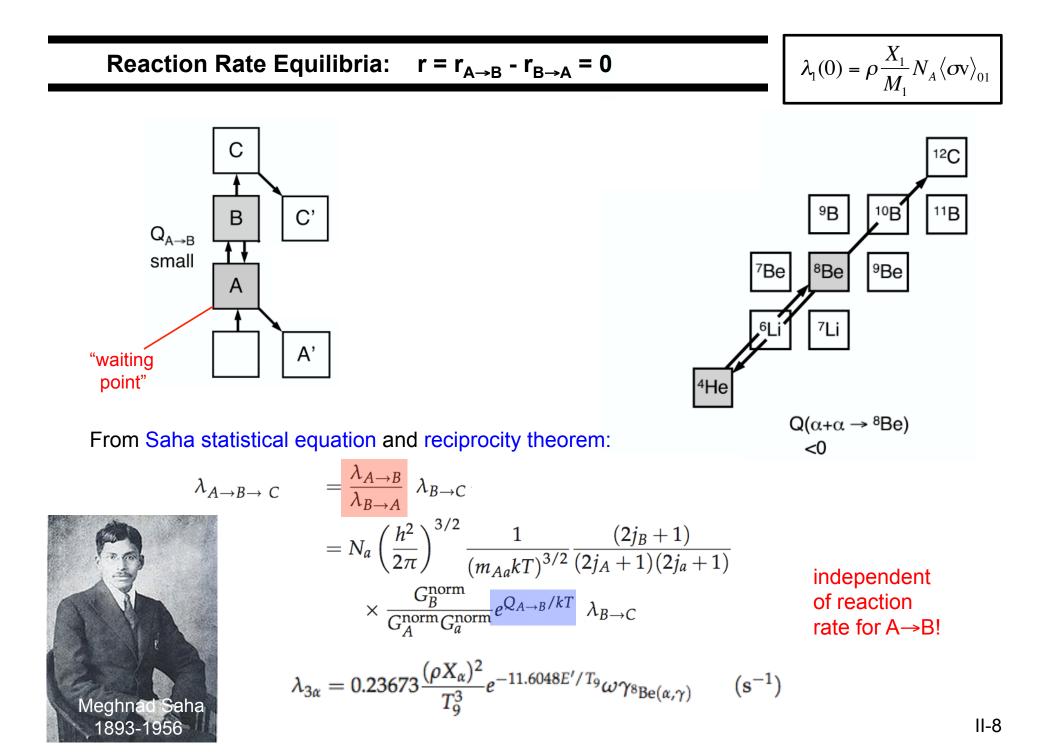


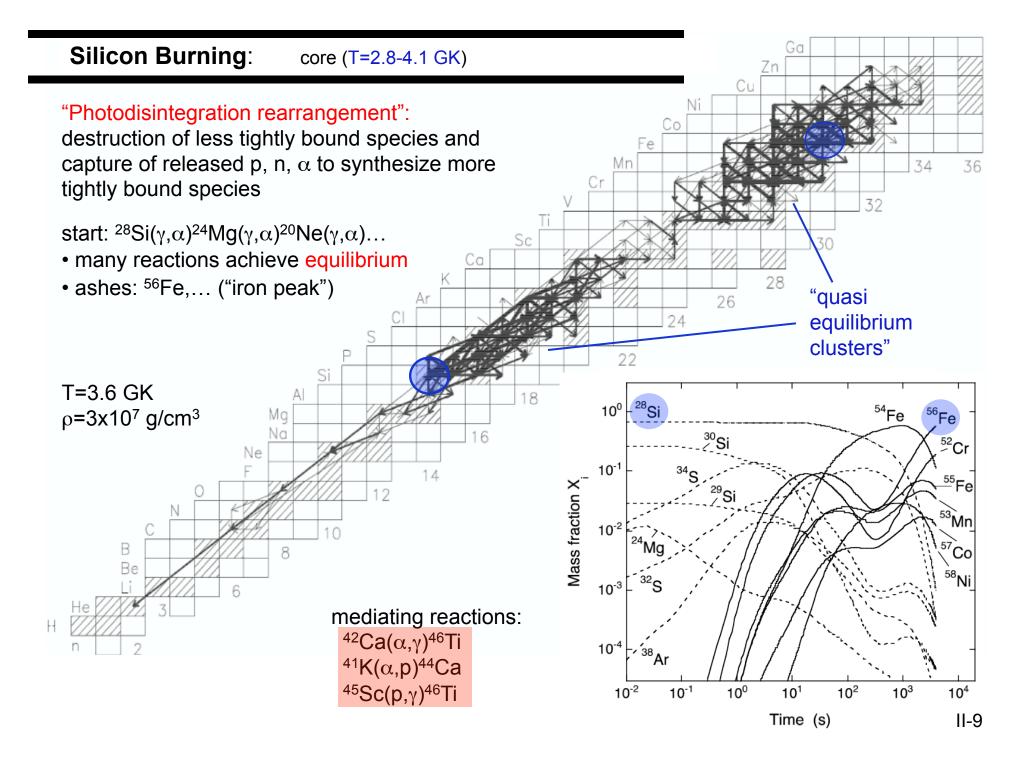
- ashes: ¹⁶O, ²⁰Ne
- last core burning stage for evolution of intermediate-mass stars; they eventually become "ONe White Dwarfs"



II-6







Nuclear Statistical Equilibrium I: General Description

As ²⁸Si disappears in the core at the end of Si burning, T increases, until all non-equilibrated reactions come into equilibrium [last reaction: 3α reaction]

One large equilibrium cluster stretches from p, n, α to Fe peak: "Nuclear Statistical Equilibrium" (NSE)

Abundance of each nuclide can be calculated from repeated application of Saha equation:

For species
$${}^{A}_{\pi}Y_{\nu}$$
: $N_{Y} = N_{p}^{\pi}N_{n}^{\nu}\frac{1}{\theta^{A-1}}\left(\frac{M_{Y}}{M_{p}^{\pi}M_{n}^{\nu}}\right)^{3/2}\frac{g_{Y}}{2^{A}}G_{Y}^{\text{norm}}e^{B(Y)/kT}$

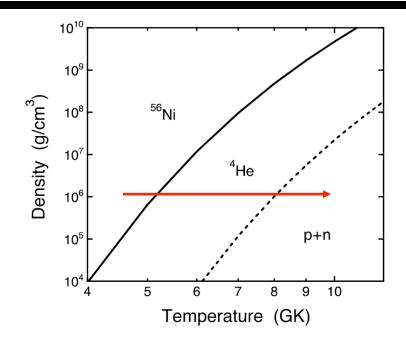
In NSE, abundance of any nuclide is determined by: temperature, density, neutron excess

$$\eta = \sum_{i} \frac{(N_i - Z_i)}{M_i} X_i$$

 N_i, Z_i, M_i : number of n, p; atomic mass
 M_i, X_i : atomic mass, mass fraction

Represents number of excess neutrons per nucleon (can only change as result of weak interactions!)

Nuclear Statistical Equilibrium II: Interesting Properties



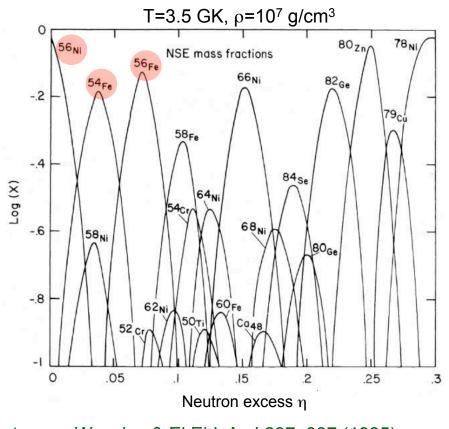
Dominant species:

⁵⁶Ni for η=0 (N-Z)/M=(28-28)/56=0 ⁵⁴Fe for η=0.04 (N-Z)/M=(28-26)/54=0.04 → ⁵⁶Fe for η=0.07 (N-Z)/M=(30-26)/56=0.07

 η needs to be monitored very carefully at each of the previous burning stages! [stellar weak interaction rates need to be known]

Assume first that $\eta=0$ when NSE is established and Si burning has mainly produced ⁵⁶Ni (N=Z=28) in the Fe peak besides ⁴He, p, n...

At ρ =const and T rising: increasing fraction of composition resides in light particles (p, n, α)



Hartmann, Woosley & El Eid, ApJ 297, 837 (1985) II-11