
Lecture #1: Nuclear and Thermonuclear Reactions 

Prof. Christian Iliadis 



Nuclear Reactions 

Definition of cross section: 

Unit: 1 barn=10-28 m2 € 

=
Nr

N0Nt

Example:  1H + 1H → 2H + e+ + ν  (first step of pp chain) 

σtheo=8x10-48 cm2 at Elab=1 MeV  [Ecm=0.5 MeV] 

1 ampere (A) proton beam (6x1018 p/s) on dense proton target (1020 p/cm2) 

gives only 1 reaction in 6 years of measurement! 
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Ecm (MeV) 

(i)  why does the cross section fall drastically at low energies? 
(ii)  where is the peak in the cross section coming from? 

Ecm (MeV) 

experimental experimental 

Cross Sections 

γ	
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Continuity condition: 

A Simple Example in 1 Dimension 

  

€ 

K 2 =
2m
2

E +V0( )

κ 2 =
2m
2

V1 − E( )

k 2 =
2m
2

E

Wave function solutions: 

Transmission coefficient: 

(after lengthy algebra, and for the limit of low E) “Tunnel effect” 
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Tunnel effect is the reason for the strong drop in cross section at low energies! 

calculated 

experimental 

Ecm	
  (MeV)	
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Back to the Simple Potential, Now in 3 Dimensions 
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wave function solutions: 

Continuity condition… 

Wave intensity in interior region: 
   (after very tedious algebra) 
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“Resonance phenomenon” 

[change of potential depth V0:  
 changes wavelength in interior region] 

A resonance results from favorable wave function matching conditions at the boundaries! 

Ecm (MeV) 

calculated experimental 
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Transmission Through the Coulomb Barrier 

“Gamow factor” e-2πη 

[for low energies and  
 zero angular momentum] 

“astrophysical S-factor” George Gamow  
    (1904-68) I-9 



cross sections 

S-factors 

Comparison: S-Factors and Cross Sections 

I-10 



Formal Reaction Theory: Breit-Wigner Formula 

de Broglie wavelength 

spin factor 
total width 

partial widths for incoming and outgoing channel 

resonance  
  energy 

Used for:  - for fitting data to deduce resonance properties 
      - for “narrow-resonance” thermonuclear reaction rates 
       - for extrapolating cross sections when no measurements exist 
       - for experimental yields when resonance cannot be resolved 

I-11 

Example: 22Ne(α,γ)26Mg 
                22Ne(α,n)25Mg 

a 

b 

c 

compound 
  nucleus 

 Eugene Wigner 
     (1902-95) 
Nobel Prize 1963 



For protons/neutrons: 

A partial width can be factored into 3 probabilities: 
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  unit	
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What are “Partial Widths”? 

C2S:      probability that nucleons will arrange themselves in a “residual nucleus  
             + single particle” configuration [“spectroscopic factor”] 
θ2:         probability that single nucleon will appear on nuclear boundary 
             [“dimensionless reduced single particle width”; Iliadis, Nucl. Phys. A 618, 166 (1997)] 
Pc:        probability that single nucleon will penetrate Coulomb and centripetal 
             barriers [“penetration factor”]  
             strongly energy-dependent: 
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  Ecm (keV) 
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Thermonuclear Reactions 

For a reaction 0 + 1 → 2 + 3 we find from the definition of σ (see earlier) a  
“reaction rate”: 

For a stellar plasma: kinetic energy for reaction derives from thermal motion: 

“Thermonuclear reaction” 

For a Maxwell-Boltzmann distribution: 
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Interplay of Many Different Nuclear Reactions in a Stellar Plasma 

production 

destruction 

System of coupled differential equations:  “nuclear reaction network”  

Solved numerically  
[Arnett, “Supernovae and Nucleosynthesis”, Princeton University Press, 1996] 
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Special Case #1: Rates for Smoothly Varying S-Factors (“non-resonant”) 

12C(α,γ)16O, T=0.2 GK 

“Gamow peak” 

Represents the energy range over which  
most nuclear reactions occur in a plasma! 
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Location and 1/e width of Gamow peak: 

however, see: Newton, Iliadis et al., Phys. Rev. C 045801 (2007) 



Gamow peaks 

Important aspects: 

(i) Gamow peak shifts to higher energy  
    for increasing charges Zp and Zt 

(ii) at same time, area under Gamow  
     peak decreases drastically 

Conclusion: for a mixture of different nuclei in a plasma, those reactions with 
                    the smallest Coulomb barrier produce most of the energy and are  
                    consumed most rapidly [→ stellar burning stages, see Lecture #2] 
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Special Case #2: Rates for “Narrow” Resonances (“Γi const over total Γ”) 

Breit-Wigner formula (energy-independent partial widths) 

“resonance strength” ωγ:  
•  proportional to area under narrow resonance curve 
•  energy-dependence of σ not important 

•  resonance energy needs to be known rather precisely  
•  takes into account only rate contribution at Er 
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Special case #3: Rates for “Broad Resonances” 

Breit-Wigner formula (energy-dependent partial widths) 

rate can be found from numerical integration 

24Mg(p,γ)25Al at T=0.05 GK 

There are two contributions to the rate: 
(i)  from “narrow resonance” at Er 
(ii)  from tail of broad resonance  
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Total Thermonuclear Reaction Rate 

Need to consider: 

-  non-resonant processes 
-  narrow resonances 
-  broad resonances 
-  subthreshold resonances 
-  interferences 
-  continuum 

direct measurements indirect 

every nuclear reaction represents a special case ! 
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Lecture #2: Nuclear Burning Stages  
[excl. explosive burning] 

Prof. Christian Iliadis 



Hydrostatic Hydrogen Burning:     sun (T=15.6 MK), stellar core (T=8-55 MK),  
                                                                           shell of AGB stars (T=45-100 MK) 

•  4H→4He releases 26.7 MeV 
•  reactions are non-resonant at low energies 
•  p+p [slowest reaction] has not been measured 
•  d+p, 3He+3He, 3He+α have been measured  
  by LUNA collaboration 
•  90% of Sun’s energy produced by pp1 chain 
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3He+3He	
  



•  12C and 16O nuclei act as catalysts 
•  branchings: (p,α) stronger than (p,γ) 
•  14N(p,γ)15O slowest reaction in CNO1 
   has been measured by LUNA/LENA 
•  solar: 13C/12C=0.01;  
  CNO1: 13C/12C=0.25 (“steady state”) 
•  T>20 MK: CNO1 faster than pp1 

Hydrostatic Hydrogen Burning:   sun (T=15.6 MK), stellar core (T=8-55 MK),  
                                                                         shell of AGB stars (T=45-100 MK) 
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Globular Cluster M10 



Helium Burning:       massive stars (T=100-400 MK) 

•  3α reaction cannot be measured directly (±15%) 
•  12C(α,γ)16O slow, crucial reaction [determines 12C/16O ratio] 
•  16O(α,γ)20Ne very slow 
•  ashes: 12C, 16O 
•  last core burning stage for evolution of low-mass stars [Sun];  
  they eventually become “CO White Dwarfs” 

Betelgeuse (α Orionis) 

 Fred Hoyle 
(1915-2001) II-4 



Carbon Burning:      core (T=0.6-1.0 GK)  

T=0.9 GK 
ρ=105 g/cm3 

II-5 

•  Primary reactions:  
     12C(12C,p)23Na 
     12C(12C,α)20Ne  
     12C(12C,n)23Mg 
   + several secondary reactions 
•  ashes: 16O, 20Ne 
•  last core burning stage for evolution of intermediate-mass stars;  
  they eventually become “ONe White Dwarfs” 

   “time-integrated  
net abundance flow” 

i	
  

j	
  

“Abundance flows” 



Neon Burning:          core (T=1.2-1.8 GK) 

T=1.5 GK 
ρ=5x106 g/cm3 

•  Primary reaction:  
      20Ne(γ,α)16O   (Q=-4730 keV) 
•  Secondary reactions 
     20Ne(α,γ)24Mg(α,γ)28Si 
        + more 
•  ashes: 16O 
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Oxygen Burning:      core (T=1.5-2.7 GK) 

16O+16O	
  

T=2.2 GK 
ρ=3x106 g/cm3 

•  Primary reactions:  
     16O(16O,p)31P 
     16O(16O,α)28Si  
      … 
   + several secondary reactions 
•  ashes: 28Si, 32S 

16O+16O	
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independent  
of reaction  
rate for A→B! 

From Saha statistical equation and reciprocity theorem: 

“waiting  
  point” 

Reaction Rate Equilibria:    r = rA→B - rB→A = 0 

€ 

λ1(0) = ρ
X1
M1

NA σv 01

Meghnad Saha 
   1893-1956 II-8 



Silicon Burning:       core (T=2.8-4.1 GK) 

“Photodisintegration rearrangement”: 
destruction of less tightly bound species and 
capture of released p, n, α to synthesize more 
tightly bound species 

start: 28Si(γ,α)24Mg(γ,α)20Ne(γ,α)… 
•  many reactions achieve equilibrium 
•  ashes: 56Fe,… (“iron peak”) 

T=3.6 GK 
ρ=3x107 g/cm3 

“quasi 
equilibrium  
clusters” 

mediating reactions: 
  42Ca(α,γ)46Ti 
  41K(α,p)44Ca 
  45Sc(p,γ)46Ti 
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Nuclear Statistical Equilibrium I: General Description 

As 28Si disappears in the core at the end of Si burning, T increases, until all 
non-equilibrated reactions come into equilibrium [last reaction: 3α reaction] 

One large equilibrium cluster stretches from p, n, α to Fe peak: 
“Nuclear Statistical Equilibrium” (NSE) 

Abundance of each nuclide can be calculated from repeated application of  
Saha equation: 

€ 

For species π
AYν :

In NSE, abundance of any nuclide is determined by: temperature, density, neutron excess 

€ 

η ≡
(Ni − Zi)
Mii

∑ Xi                        

Ni,  Zi,  Mi :  number of n, p; atomic mass                                                
Mi,  Xi :  atomic mass, mass fraction                                                    
                                                     

Represents	
  number	
  of	
  excess	
  neutrons	
  	
  
per	
  nucleon	
  (can	
  only	
  change	
  as	
  result	
  	
  
of	
  weak	
  interac@ons!)	
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Assume first that η=0 when NSE is established  
and Si burning has mainly produced 56Ni (N=Z=28)  
in the Fe peak besides 4He, p, n… 

At ρ=const and T rising: increasing fraction of  
composition resides in light particles (p, n, α) 

Nuclear Statistical Equilibrium II: Interesting Properties 

II-11 Hartmann, Woosley & El Eid, ApJ 297, 837 (1985) 

T=3.5 GK, ρ=107 g/cm3 

Dominant species: 

56Ni for η=0          (N-Z)/M=(28-28)/56=0 
54Fe for η=0.04    (N-Z)/M=(28-26)/54=0.04 
56Fe for η=0.07    (N-Z)/M=(30-26)/56=0.07 
… 
 η needs to be monitored very carefully at 
each of the previous burning stages! 
[stellar weak interaction rates need to be 
known] Neutron excess η 


