10th Russbach School on Nuclear Astrophysics Salzburg, Austria, March 10-16, 2013

Supernova Ncleosynthesis and Neutrino Oscillation θ_{13} is known! Mass hierarchy and CP-pahse come next ?

Taka KAJINO

National Astronomical Observatory Department of Astronomy, University of Tokyo

Challenge of the Century

Universal expansion is most likely <u>accelerating</u> and <u>flat</u> !

 $\Omega_{\rm B} + \Omega_{\rm CDM} + \Omega_{\Lambda} = \mathbf{1}$

- What is the Cold Dark Matter, Ω_{CDM} = 0.23, and Dark Energy, Ω_Λ = 0.73 ?
 CMB including v-mass: Yamazaki, Kajino, Mathews & Ichiki, Phys. Rep. 517 (2012),141-167.
- Is BARYON sector, $\Omega_{\rm B}$ = 0.04, well understood ?
 - BBN with Axions + SUSY to solve Dark Matter Problem & Li Problem: Kusakabe, Balantekin, Kajino & Pehlivan, Phys. Lett. B718 (2013) 704.
 - SUSY-DM \Rightarrow m_v \neq 0 is the unique signal to go "beyond the Standard Model"!

v mass and hierarchy ?

Today's Talk

"Supernova v-Process Nucleosynthesis" to determine the <u>v-MASS HIERARCHY.</u>

$$v_i + \overline{v_i} \rightleftharpoons e^+ + e^- \rightleftharpoons 2\gamma (T)$$

Key Physics suggested by FINITE mass neutrinos: Unification of elementary forces beyond the standard model ? CP violation and Lepto- & Baryo-genesis ? Why left-handed neutrinos, Majorana or Dirac ? Explosion Mechanism of Supernovae ?

"KNOWN" of Neutrino Oscillations

KAMIOKANDE, SK, KamLand (reactor v), SNO determined Δm_{12}^2 and θ_{12} uniquely, and also SK (atmospheric v) determined Δm_{23}^2 and θ_{23} uniquely.

23-mixing $\sin^2 2\theta_{23} = 1.0$ $|\Delta m_{23}^2| = 2.4 \times 10^{-3} \text{ eV}^2$

12-mixing Cabibbo angle $\sin^2 2\theta_{12} = 0.816 \ (\theta_{12}+\theta_{C}=\pi/2)$ $\Delta m^2_{12} = 7.9 \times 10^{-5} \text{ eV}^2$

"UNKNOWN"

13-mixing, hierarchy, CP, mass

sin²2θ₁₃ (< 0.1) T2K, MINOS, RENO, Daya Bay, Double Chooz

Absolute Mass 0νββ, cosmology

 $E(\nu\mu)=E(\nu\tau)$: Yokomakura et al., PL B544, 286.

Various Neutrino-Sources in Nature

(U.T. 07:35:35, 2/23 87)

Solar System Abundance

Various roles of v's in SN-nucleosynthesis

Neutron Number

R-process Nucleosynthesis

Otsuki, Tagoshi, Kajino and Wanajo, ApJ 533 (2000), 424; Wanajo, Kajino, Mathews and Otsuki, ApJ J. 554 (2001), 578.

Neutron-rich condition for successful r-process: $0.1 < Y_e < 0.48$

Tantalum(^{180,181}Ta)

¹⁸¹Ta_g(stable), ¹⁸⁰Ta_g(unstable, $\tau_{1/2} = 8h$), ¹⁸⁰Ta^m(isomer, $\tau_{1/2} > 10^{15}y$)

The rarest isotope in the Universe!

Origin of ¹⁸⁰Ta was unknown. "SN v-process" overproduces ¹⁸⁰Ta !

Supernova v-Process Nucleosynthesis

A. Heger, Phys. Lett. B 606, 258 (2005)

Byelikov + Fujita et al., PRL (2007), RCNP measurement of GT strength.

Overproduction of ¹⁸⁰Ta relative to ¹³⁸La!

¹⁸⁰Ta-genesis needs Quantum Phys. + SN Hydro-dyn.

Solar-¹⁸⁰Ta is all "**ISOMER**" with $T_{1/2} > 10^{15}$ y!

Long lived ¹⁸⁰Ta^m is excited to intermediate states in the photon bath in SNe, and decay with the ground state in 8 hours.

We solved dynamical "explosive SN-nucleosynthesis" coupled with "quantum transitions" simultaneously. (Hayakawa, et al. 2010, PR C81, 052801®; PR C82, 058801)

v-Process and Structure of ¹⁸⁰Ta

Saitoh et al. (NBI group), NPA 1999, + Dracoulis et al. (ANU group), PRC 1998, +

Excitation Energy [MeV]

Formula to calculate time-dept linking transitions

Hayakawa, Kajino, Mohr, Chiba & Mathews, PR C81 (2010), 052801®; PR C82 (2010), 058801

★ General formula (Einstein AB theory) for $kT << \Delta E_{ij}$:

4

2

$$\frac{dN_{0}}{dt} = -\sum_{ip} P_{i}^{g} A_{ip} N_{0} + \sum_{ip} P_{i}^{m} \rho B_{pi} (1 - N_{0}), -\sum_{jq} P_{j}^{g} \rho B_{qj} N_{0} + \sum_{jq} P_{j}^{m} A_{jq} (1 - N_{0})$$

$$= -\sum_{ip} P_{0}^{g} \frac{g_{i}}{g_{0}} exp(-(E_{i} - E_{0})/kT) A_{ip} N_{0} + \sum_{ip} P_{1}^{m} \frac{g_{i}}{g_{1}} exp(-(E_{i} - E_{1})/kT) A_{ip} (1 - N_{0}),$$
Thermal Equilibrium Linking Thermal Equilibrium $m_{i}/m_{j} = (2J_{i} + 1)/(2J_{j} + 1)exp(-(E_{i} - E_{j})/kT),$

$$P_{i} \equiv m_{i}/m_{total} = \frac{m_{i}/m_{0}}{\sum(m_{i}/m_{0})}.$$

$$P_{i} \equiv m_{i}/m_{total} = \frac{m_{i}/m_{0}}{\sum(m_{i}/m_{0})}.$$

$$\frac{\star \ln the SPECIFIC case of 180Ta:}{Transition prob. \sum_{p} A_{ip} = \Gamma_{i}/\hbar \leftarrow Exp.$$

$$\frac{dN_{0}}{dt} = -\sum_{i} P_{0}^{g} \frac{g_{1}}{g_{0}} exp(-(E_{i} - E_{0})/kT) \frac{g_{i}}{q_{1}} \frac{\Gamma_{i}}{\hbar} V_{0} + \sum_{i} P_{1}^{m} exp(-(E_{i} - E_{1})/kT) \frac{g_{i}}{q_{1}} \frac{\Gamma_{i}}{\hbar} (1 - N_{0}).$$

Result from v-Nucleosynthesis

T. Hayakawa, T. Kajino, S. Chiba, and G.J. Mathews, Phys. Rev. C81 (2010), 052801®

About 40% ¹⁸⁰Ta^m survives in supernova explosion.

Then, both ¹³⁸La and ¹⁸⁰Ta abundances can be consistently reproduced by the CC-int. of v_e and $\overline{v_e}$ of

Supernova v-Process to estimate Tv_{μ} and Tv_{τ}

SN II: Yoshida, Kajino & Hartman, Phys. Rev. Lett. 94 (2005), 231101. SNIc + II: Nakamura, Yoshida, Shigeyama, Kajino, ApJL 718 (2010), L137.

⁴He(v,v'p)³H, ⁴He(v,v'n)³He, ¹²C(v,v'p)¹¹B $(^{4}\text{He}(v_{e},e^{-}p)^{3}\text{He}, ^{4}\text{He}(\overline{v}_{e},e^{+}n)^{3}\text{H}, ^{12}\text{C}(v_{e},e^{-}p)^{11}\text{C}, ^{12}\text{C}(\overline{v}_{e},e^{+}n)^{11}\text{B})$

Overproduction Problem of Supernova-11B

S. M. Austin, Prog. Part. Nucl. Phys. 7, 1 (1981)

- Meteoritic Abundances: ${}^{11}B/{}^{10}B = 4.05 + 0.10 (GCR + SNe)$
- Galactic Cosmic-Ray: ${}^{11}B/{}^{10}B = 2.0 + 0.2$ (GCR)

Galactic Chemical Evolution of ⁹Be & ^{10,11}B

Average v-temperatures are now known!

- •R-process Elements & ¹⁸⁰Ta/¹³⁸La $\rightarrow Tv_e = 3.2$ MeV, $T\overline{v_e} = 4$ MeV
- •Astron. GCE of Light Elements & ¹¹B $\implies Tv_{\mu} = Tv_{\tau} = 6$ MeV

Neutrino Oscillation (MSW Effect) through propagation

⁷Li and ¹¹B are produced in the He/C Shell

14N

larger effect !

Yoshida, Kajino, Yokomakura, Kimura, Takamura & Hartmann, PRL 96 (2006) 09110; ApJ 649 (2006), 349.

Exploring the neutrino mass hierarchy probability with meteoritic supernova material, ν -process nucleosynthesis, and θ_{13} mixing

G. J. Mathews,^{1,2} T. Kajino,^{2,3} W. Aoki,² W. Fujiya,⁴ and J. B. Pitts⁵

Bayesian Analysis, including astrophysical model dependence on SN progenitor mass, v-temp. (T_{ve} , T_{ve} , $T_{v\mu\tau}$, $\overline{v_{\mu\tau}}$) and nuclear input data.

$$\begin{split} P(M_i|D) &= \frac{P(D|M_i)P(M_i)}{\sum_j P(D|M_j)P(M_j)} \\ P(D|M_i) &= \int dEdZ da_k P(E,Z,D|M_i,a_k)P(a_k|M_i) \\ &= \int dEdZ da_k P(D|M_i,a_k,E,Z)P(Z,E|M_i,a_k)P(a|M_i) \end{split}$$

TABLE I: Parameter likelihood functions $P(a_k|M_i)$.

Parameter a_k	prior			reference
$\sin^2 2\theta_{13}$	$e^{-(x-x_0)/2\sigma_x^2}$	$x_0 = 0.92$	$\sigma_x = 0.017$	[7]
R _{3a}	$e^{-(x-x_0)/2\sigma_x^2}$	$x_0 = 1.0$	$\sigma_x = 0.12$	[35]
$R_{12C\alpha}$	$e^{-(x-x_0)/2\sigma_x^2}$	$x_0 = 1.2$	$\sigma_x = 0.25$	[36]
$M_{prog}(M_{\odot})$	$m^{-2.65}$	$m_{min} = 10$	$m_{max} = 25$	[37]
$T_{\nu}({ m MeV})$	Top hat	$T_{\nu} = 3.2 - 6.5$	(see text)	[15]

MSW Effect & v Mass Hierarchy

Yoshida, Kajino et al . 2005, PRL94, 231101; 2006, PRL 96, 091101; 2006, ApJ 649, 319; 2008, ApJ 686, 448.

T2K (Kamioka)MINOS

Reactor Exp. in2012:

- •Double CHOOZ
- Daya Bay
- •RENO (KOREA)

 $sin^2 2\theta_{13} = 0.1$

11B/10B

Note. ${}^{a}\delta^{i}Si = [({}^{i}Si/{}^{28}Si)/({}^{i}Si/{}^{28}Si)_{\odot} - 1] \times 1000.$

Supernova X-Grain Coinstraint

Mathews, Kajino, Aoki And Fujiya, Phys. Rev. D85,105023 (2012).

T2K, MINOS (2011)
Double CHOOZ, Daya Bay, RENO (2012)

 $sin^2 2\theta_{13} = 0.1$

First Detection of ⁷Li/¹¹B in SN-grains

W. Fujiya, P. Hoppe, & U. Ott, ApJ 730, L7 (2011).

More Observational Effort is required !

Astron. Observations

SN-remnants & r-enhanced metal-poor stars are enriched by SN-products!

 ⁷Li & ¹¹B, separately detected !
 ⁷Li/ ⁶Li isotopic ratio has recently detected in supernova remnant IC443. (Ritchey et al. 2012)

Presolar SiC grains

X-grains are made of SN-dusts!

P. Hoppe et al. ApJ 551 (2001) 478, W. Fujiya, P. Hoppe, and U. Ott, ApJ 730, L7 (2011).

⁷Li/ ¹¹B; more data, required !

Simultaneous detection is highly desirable!

v–Nucleus Cross-Sections

New Shell Model cal. with NEW Hamiltonian: v -12C, 4He Suzuki, Chiba, Yoshida, Kajino & Otsuka, PR C74 (2006), 034307. Suzuki, Fujimoto & Otsuka, PR C67, 044302 (2003)

¹²C: New Hamiltonian = Spin-isospin flip int. with tensor force to explain neutron-rich exotic nuclei.

- μ -moments of p-shell nuclei
- GT strength for ${}^{12}C \rightarrow {}^{12}N$, ${}^{14}C \rightarrow {}^{14}N$, etc. (GT)
- DAR (v,v'), (v,e-) cross sections

QRPA cal.: v -180Ta, 138La, 98Tc, 92Nb, 42Ca, 12C, 4He...

Cheoun, et al., PRC81 (2010), 028501; PRC82 (2010), 035504: J. Phys. G37 (2010), 055101; PRC 83 (2011), 028801

Hamiltonian Dependence on MSW-Effect

Previous SM- σ_v **(E) of Haxton**

Woosley, Haxton, Hoffmann, Wilson, ApJ. (1990). Hoffmann & Woosley, ApJ. (1992).

New SM-σ_ν(E) using WBP(⁴He) & SFO(¹²C) interactions

Suzuki, Chiba, Yoshida, Kajino & Otsuka, PR C74 (2006), 034307: Suzuki & Kajino, J. Phys. G (2013).

Normal / inverted, well separated ! \rightarrow ⁷Li/¹¹B-ratio is SM independent ! Mixing angle θ_{13} dependence, almost the same !

★ v-beam experiment is not available ! ★ EM-PROBE (CEX hadrons, γ's) !

Similarity between Electro-Magnetic & Weak Interactions

Neutrino Hamiltonian: $H_{tot} = H_v + H_{vv}$

<u> $H_{\underline{v}}$ = Mixing and Interaction with Background Electrons</u>

MSW (Matter) Effect: Mikeheev-Smirnov-Wolfebstein (1978, 1985)

$$H_{\nu} = \frac{1}{2} \int d^3 p \left(\frac{\delta m^2}{2p} \cos 2\theta - \sqrt{2} G_F N_e \right) \left(a_x^{\dagger}(p) a_x(p) - a_e^{\dagger}(p) a_e(p) \right) \qquad \mathsf{P}_1 \quad \mathsf{v}_e \qquad \mathsf{P}_1 \quad \mathsf{v}_e \qquad + \frac{1}{2} \int d^3 p \frac{\delta m^2}{2p} \sin 2\theta \left(a_x^{\dagger}(p) a_e(p) + a_e^{\dagger}(p) a_x(p) \right), \qquad \mathsf{X}$$

 N_e = electron density

$\underline{H}_{\nu\nu} = \underline{Self-Interaction}$ Self-Interaction

 $H_{\nu\nu} = \frac{G_F}{\sqrt{2}V} \int d^3p \, d^3q \, R_{pq} \left[a_e^{\dagger}(p)a_e(p)a_e^{\dagger}(q)a_e(q) + a_x^{\dagger}(p)a_x(p)a_x^{\dagger}(q)a_x(q) + a_x^{\dagger}(p)a_e(p)a_e^{\dagger}(q)a_x(q) + a_e^{\dagger}(p)a_x(p)a_x^{\dagger}(q)a_e(q) \right],$

Quest for EXACT Many-Body SOLUTION !

"Invariants of collective neutrino oscillations" Y. Pehlivan, A.B. Balantekin, T. Kajino & T. Yoshida Phys. Rev. D84, 065008 (2011)

V self-interaction (Quantum Effect)

v-Asymmetry under the Strong Dipole (Poroidal) Magnetic Field

Fundamental Interactions among Hadrons (p, n, Λ , Σ ...) and Lepton (e,v...) at High- ρ and High-T in Relativistic Field Theory and QCD

Maruyama, Kajino, Yasutake, Cheoun, & Ryu, PRD83 (2011), 081302 (R).

Proto-neutron stars in c.c. Supernovae

Neutrino scattering and absorption process inside the magnetized Neutron star (10¹⁵G) is asymmetric.

 \Rightarrow ~ 2 % asymmetric v-abs. (drift)

⇒ Enough for Pulsar-Kick ~500km/s !

Why Amino Acids on the Earth, All Left-Handed?

Chitrality, earth origin or universal?

- ★ Neutrinos are all left-handed!
- ★ Supernovae with strongly magnetized neutron star or BH emit intensive flux of neutrinos over 10¹⁰ yrs!
- ★ SN ejecta including ¹⁴N interact with neutrino under strong magnetic field!
- ★ Neutrino-¹⁴N coupling is asymmetric & chiral selective!

Boyd, Kajino, & Onaka suggested that the L-handed chirality of amino acids is UNIVERSAL! (Astrobio. 10, 2010, 561-568; Int. J. Mol. Sci. 12, 2011, 3432)

Magnetized Supernovae

¹⁴N lives !

Mann and Primakoff (Origins of Life, 11 (1981), 255) suggested β -decay of 14C, but it's too SLOW!

SUMMARY

<u>v-Mass hierarchy:</u>

- We proposed a new nucleosynthetic method to estimate average v-spectra from core-collapse supernovae: $T(v_e) = 3.2MeV, T(\overline{v_e}) = 4.0MeV, T(v_x) = 6.0MeV.$

- ⁷Li/¹¹B isotopic ratios of SiC X-grains (SN-grains) enriched in vprocess materials have the potential to solve the mass hierarchy for finite θ_{13} . Inverted hierarchy is more preferred statistically.

Total v-mass:

- Curvature perturbation is shown to be generated by the extra anisotropic stress π_{ext} without tuning the initial condition of inflation-driven (pre-Big-Bang) perturbation. This would constrain the generation epoch and the nature of primordial (unknown) π_{ext} .

- Total v-mass is constrained to be $\Sigma m_v < 0.2 \text{ eV}$ from the MCMC analysis of CMB temperature and polarization anisotropies including the primordial magnetic field.