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Binary neutron stars
I handful of binary ns systems are known to exist;
I decay due to emission of gravitational waves;
I will eventually merge.

[from Lattimer (2010)]
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Binary neutron stars
PSR B1913+16:
The Hulse-Taylor binary pulsar
(to merge in ∼ 3 × 108 years).

[from Weisberg & Taylor (2004)]

O. Korobkin

Robustness of the r-process in neutron star mergers



Introduction Neutron star mergers Nucleosynthesis Results Conclusion

Orbital lifetime of an eccentric binary system:
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The origin of short GRBs
Bimodal distribution:

[from Gehrels, Ramirez-Ruiz & Fox (2009)]
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The origin of short GRBs

Short GRBs most likely result from mergers of two neutron stars or a
neutron star and a black hole.

[from Graham et al.(2007)]

Example GRB (070714B):
I energetics: Eiso = 1.2 × 1051erg;
I duration: 𝜏 ∼ 3 s;
I spectroscopic redshift: z = 0.923;
I distance: D = 7.4 × 109 light years.
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Metal-poor r-process stars

[from Sneden et al. (2008)]
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Connection with the r-process
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Neutron star mergers
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Merger simulations

Simulation method

I Smooth Particle Hydrodynamics (SPH) – Rosswog (2009);
I Shen equation of state – Shen et al. (1998a,b);
I Opacity-dependent multi-flavour neutrino leakage scheme –

Rosswog & Liebendörfer (2003);
I State of the art artificial viscosity prescription – Rosswog (2008);
I Newtonian gravity.
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Merger simulations

Animations

Coalescence of two neutron stars with masses 1.4 and 1.3 ℳ⊙, with
no spin (the most likely case).

temperature electron fraction

[see Rosswog, Piran&Nakar (2012)]
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Merger simulations

Parameter space

[from Piran, Nakar & Rosswog 2012]

Explored parameter space:
I neutron stars masses:

1.0, 1.2, ..., 2.0ℳ⊙;
I black hole - neutron

star mergers:
mbh = 5, 10ℳ⊙,
mns = 1.4ℳ⊙.
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Merger simulations

Morphology of the mergers

Density cuts of the 1.2-1.4 ℳ⊙ and the 1.4-1.4 ℳ⊙ cases:

O. Korobkin

Robustness of the r-process in neutron star mergers



Introduction Neutron star mergers Nucleosynthesis Results Conclusion

Properties of the ejecta

Dynamical ejecta

We are interested in the nucleosynthesis in all regions of the merger
where the matter becomes unbound and contributes to the galaxy:

I neutrino-driven winds;
I outer parts of accretion

disk;
I dynamical ejecta;
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Properties of the ejecta

Where does the dynamical ejecta come from?
Two components can be identified:

I tidal component;
I interaction region component.
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Properties of the ejecta

Location of the ejecta prior to merger
Density profile inside of a neutron star:
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Properties of the ejecta

Location of the ejecta prior to merger
Profile of the electron fraction:
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Properties of the ejecta

Location of the ejecta prior to merger
Profile of the electron fraction:

��
��

O. Korobkin

Robustness of the r-process in neutron star mergers



Introduction Neutron star mergers Nucleosynthesis Results Conclusion

Properties of the ejecta

Location of the ejecta prior to merger
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Distribution is clustered around ⟨Ye⟩ ≈ 0.03
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Properties of the ejecta

Properties of the ejecta

Summary:
I masses: Mej = (7.6 × 10−3 − 3.9 × 10−2) ℳ⊙;
I velocities: vej ∼ 0.11 c;
I electron fraction: Ye = 0.04 ± 0.02;
I starting densities: 𝜌 = (1.4 ± 0.5) × 1014 g cm−3;
I will continue to expand adiabatically and without shocks;
I densities when the temperature drops to 10GK:

𝜌 = (109 − 1012) g cm−3.
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Nucleosynthesis

O. Korobkin

Robustness of the r-process in neutron star mergers



Introduction Neutron star mergers Nucleosynthesis Results Conclusion

The r-process

The r-process path

[Möller, Nix & Kratz (1997)]
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Nucleosynthesis network

Method

I use thermodynamic conditions from merger simulations for
calculating r-process network nucleosynthesis;

I large reaction network (Winteler 2012, Winteler et al. 2012),
based on the BasNet network (Thielemann et al. 2011);

I includes more than 5800 isotopes up to Z = 111;
I reaction rates from Rauscher & Thielemann (2000);
I e±-captures, 𝛽-decays (Arcones & Martinez-Piñedo 2011);
I neutron capture and neutron-induced fission rates (Panov 2010);
I 𝛽-delayed fission (Panov 2005);

O. Korobkin

Robustness of the r-process in neutron star mergers



Introduction Neutron star mergers Nucleosynthesis Results Conclusion

Thermodynamic trajectories

Individual trajectories of the SPH particles
To calculate nucleosynthetic yields, we follow thermodynamical
histories of individual SPH particles.

I 30 representative SPH particles from each merger simulation;
I because merger simulations only cover 10 − 20 ms, we extrapolate

densities using a free expansion fit: 𝜌(t) = 𝜌fin

(︁
t

tfin

)︁−3
;

I we calculate the temperature by taking into account nuclear heating:
T(t) = TEoS[S(t), 𝜌(t), Ye(t), ⟨A⟩], where nuclear heating increases the
entropy S(t).

I at each timestep, we increment the entropy by ΔS = 𝜖th𝛿Q/T

I 𝜖th is the heating efficiency (Metzger, 2010).
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Thermodynamic trajectories

Individual trajectories of the SPH particles
Typical thermodynamic trajectory:
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Database of thermodynamic trajectories:
http://compact-merger.astro.su.se/downloads.html
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Thermodynamic trajectories

Individual trajectories of the SPH particles
Bundle of postprocessed thermodynamic trajectories:
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Results
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Animation

Animation of the r-process

[produced using modified python script of C. Winteler]
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Results and discussion

Main result
Robust pattern of main r-process final abundances, independent from
the trajectories or simulations:
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(confirmed in Bauswein et al. 2013 for a wide range of EoS)
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Results and discussion
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Results and discussion

Main result
Dependence on the heating efficiency (in ∆S = 𝜖th𝛿Q/T):
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Results and discussion

Main result
Dependence on the heating efficiency (in ∆S = 𝜖th𝛿Q/T):
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Results and discussion

Main result
There is much more substantial variation due to the nuclear input,
such as fission products mass distribution:
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Results and discussion

Interpretation
The ejected matter is extremely neutron-rich. As a result, the
r-process path lies very close to the neutron drip line and leads to
several fission cycles:
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Results and discussion
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Nuclear heating power

Fit formula for the nuclear heating power

108

1012

1016

1020

10-2 100 102 104 106

10-6 10-4 10-2 100 102

nu
cl

ea
r 

he
at

in
g 

po
w

er
 [e

rg
/(

g·
s)

]

time [s]

time [days]

∝  t -α

∝  const. averaged trajectory
εth = 0.1
εth = 0.5
εth = 0.9

fit

�̇�(t) = 𝜖0

(︂
1
2
− 1

𝜋
arctan

t − t0

𝜎

)︂𝛼

×
(︁ 𝜖th

0.5

)︁
(1)

with 𝜖0 = 2 × 1018 erg/(g s), t0 = 1.3 s, 𝜎 = 0.11 s, and 𝛼 = 1.3.
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Production rates

Galactic r-process production rate estimates

(ns merger rate/galaxy) × (total mass ejected per event) =

(83.0+209.1
−66.1 Myr−1) × (0.012 ℳ⊙) ≈ 10−6ℳ⊙ · yr−1
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Conclusion

1. We systematically cover the plausible ns binary parameter space
with masses from 1.0 to 2.0 ℳ⊙ in 21 ns2 + 2 nsbh simulations.

2. Nucleosynthesis in neutron star merger ejecta is robust.
3. The amount of ejected material is consistent with the observed

quantity of the r-process in the galaxy.
4. The pattern of nucleosynthetic yields for the heavy elements

roughly reproduces solar abundances, as well as similar
abundances in the r-process enriched stars. Discrepancy mostly
due to unknown nuclear physics near the neutron drip line.

Database of ns2 and nsbh merger trajectories:
http://compact-merger.astro.su.se/downloads.html
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Weak and main r-process in metal-poor stars

From H. Li, X. Sheng,
S. Liang, W. Cui, B. Zhang
(2013):

Ni([Fe/H]*) =

(Cr,mNi,r,m + Cr,wNi,r,w) × 10[Fe/H]
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