Understanding the Sun with neutrinos: results from the Borexino experiment

Marianne Göger-Neff
Technische Universität München
Russbach, 13.03.2013
Outline

Motivation:
solar neutrinos
neutrino oscillations

Borexino:
the detector
signal and background

Solar neutrino results:
7Be
8B
pep and CNO
Future plans

Conclusion
The Sun

energy production by nuclear fusion
(hydrogen burning)

$$4p \rightarrow ^4\text{He} + 2e^+ + 2\nu_e + 26.7\text{ MeV}$$

predict solar neutrino flux from solar luminosity:

1370 W/m^2 (at earth) => 6.5 x 10^{10} \nu/cm^2 s

light (photons) takes 10^5-10^6 years from core to surface

neutrinos escape from the core
real-time information from the solar core
(~ 8 minutes delay)
Nuclear reactions in the solar core

pp cycle

\[p + p \rightarrow ^2\text{H} + e^+ + \nu_e \]

99.77%

\[p + ^2\text{He} \rightarrow ^3\text{He} + \gamma \]

84.7%

\[^3\text{He} + ^3\text{He} \rightarrow ^4\text{He} + 2p \]

\[^3\text{He} + ^4\text{He} \rightarrow ^7\text{Be} + \gamma \]

13.8%

\[^7\text{Be} + e^- \rightarrow ^7\text{Li} + \nu_e \]

13.78%

\[^7\text{Li} + p \rightarrow ^4\text{He} + ^4\text{He} \]

\[^7\text{Be} + p \rightarrow ^8\text{B} + \gamma \]

0.02%

\[^8\text{B} \rightarrow ^8\text{Be} + e^+ + \nu_e \]

\[^8\text{B} \rightarrow ^4\text{He} + ^4\text{He} \]

\[^{12}\text{C} + ^1\text{H} \rightarrow ^{13}\text{N} + \gamma \]

13C + e^+ → ν

\[^{13}\text{N} \rightarrow ^{13}\text{C} + e^+ → \nu \]

\[^{14}\text{N} + ^1\text{H} \rightarrow ^{15}\text{O} + \gamma \]

\[^{15}\text{O} \rightarrow ^{15}\text{N} + e^+ → \nu \]

\[^{15}\text{N} + ^1\text{H} \rightarrow ^{12}\text{C} + ^4\text{He} \]

\[^{16}\text{O} + ^1\text{H} \rightarrow ^{17}\text{F} + \gamma \]

\[^{17}\text{F} \rightarrow ^{17}\text{O} + e^+ → \nu \]

\[^{17}\text{O} + ^1\text{H} \rightarrow ^{14}\text{N} + ^4\text{He} \]

CNO cycle

<1% of energy

poorly known

not directly measured yet
The **Standard Solar Model**

The SSM is the theoretical framework which is used to make predictions on the solar neutrino fluxes.

[Serenelli et al. 2011](#)
The **Standard Solar Model**

The SSM is the theoretical framework which is used to make predictions on the solar neutrino fluxes.

Recent improvements in the SSM (>2004):

- new determination of $^{14}\text{N}(p,\gamma)^{15}\text{O}$ cross section reduced CNO fluxes by a factor ~ 2
- a factor of 2 better accuracy for $^{3}\text{He}^{(4}\text{He},\gamma)^{7}\text{Be}$ cross section
- new opacities calculations
- more accurate solar surface abundancies
- improved 3D models

\Rightarrow suggest lower metalliclicity Z
Prediction of Solar Neutrino Fluxes

<table>
<thead>
<tr>
<th>Source</th>
<th>Neutrino Flux [cm$^{-2}$s$^{-1}$]</th>
<th>Neutrino Flux [cm$^{-2}$s$^{-1}$]</th>
<th>Difference [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SSM-GS98</td>
<td>SSM-AGS09</td>
<td></td>
</tr>
<tr>
<td>pp</td>
<td>$5.98(1\pm0.006)\times10^{10}$</td>
<td>$6.03(1\pm0.006)\times10^{10}$</td>
<td>0.8</td>
</tr>
<tr>
<td>pep</td>
<td>$1.44(1\pm0.012)\times10^{8}$</td>
<td>$1.47(1\pm0.012)\times10^{8}$</td>
<td>2.1</td>
</tr>
<tr>
<td>7Be</td>
<td>$5.00(1\pm0.07)\times10^{9}$</td>
<td>$4.56(1\pm0.07)\times10^{9}$</td>
<td>8.8</td>
</tr>
<tr>
<td>8B</td>
<td>$5.58(1\pm0.13)\times10^{6}$</td>
<td>$4.59(1\pm0.13)\times10^{6}$</td>
<td>17.7</td>
</tr>
<tr>
<td>13N</td>
<td>$2.96(1\pm0.15)\times10^{8}$</td>
<td>$2.17(1\pm0.15)\times10^{8}$</td>
<td>26.7</td>
</tr>
<tr>
<td>15O</td>
<td>$2.23(1\pm0.16)\times10^{8}$</td>
<td>$1.56(1\pm0.16)\times10^{8}$</td>
<td>30.0</td>
</tr>
<tr>
<td>17F</td>
<td>$5.52(1\pm0.18)\times10^{6}$</td>
<td>$3.40(1\pm0.16)\times10^{6}$</td>
<td>38.4</td>
</tr>
<tr>
<td>CNO total</td>
<td>5.24×10^{8}</td>
<td>3.76×10^{8}</td>
<td>28.3</td>
</tr>
</tbody>
</table>

But: low Z models are in conflict with helioseismology (R_{CZ}, Y_{surf})

Can solar neutrino measurements decide?
The Solar neutrino problem

Objective of the first solar neutrino experiment:
“...to see into the interior of a star and thus verify directly the hypothesis of nuclear energy generation in stars.”
(Bahcall, PRL 12, 300, 1964)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Data/ SSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homestake $(\nu_e^{37} \text{Cl} \to ^{37} \text{Ar} + e)$</td>
<td>0.34 ± 0.03</td>
</tr>
<tr>
<td>Sage + Gallex $(\nu_e^{71} \text{Ga} \to ^{71} \text{Ge} + e)$</td>
<td>0.56 ± 0.04</td>
</tr>
<tr>
<td>Superkamiokande $(\nu_x + e \to \nu_x + e)$</td>
<td>0.46 ± 0.02</td>
</tr>
</tbody>
</table>

finally solved by the SNO experiment:

CC: $\nu_e + d \to p + p + e^-$
NC: $\nu_x + d \to p + n + \nu_x$

$$\frac{\phi_{\text{NC}}^{\text{SNO}}}{\phi_{\text{SSM}}} = 1.01 \pm 0.12$$

solar neutrino flux is compatible with SSM

neutrinos undergo flavor conversion: neutrino oscillations
Solar neutrino oscillations are well approximated by 2-flavor mixing:
\[
\begin{pmatrix}
\nu_e \\
\nu_\mu
\end{pmatrix} = \begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix} \begin{pmatrix}
\nu_1 \\
\nu_2
\end{pmatrix}
\]

Only ν_e are produced in solar fusion and detected by (most) experiments. In vacuum, the survival probability is
\[
P_{ee} = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E} \right)
\]

Due to the large distance and loss of coherence, P_{ee} takes an average of
\[
P_{ee} = 1 - \frac{1}{2} \sin^2 2\theta \approx 0.6
\]
Solar Neutrino Oscillations in Matter

Matter is made of e^- (no μ, τ)
- coherent ν-e^- scattering affects oscillations
- ν_e interactions different from $\nu_{\mu\tau}$
- “effective potential” for ν_e different from $\nu_{\mu\tau}$
 (Wolfenstein, '78)

Resonance effect (Mikheyev & Smirnov, 1985)
- adiabatic conversion in matter with slowly varying density

MSW Effect in the Sun:
- Low energy neutrinos (pp ν) \rightarrow oscillations as in vacuum
 \[P_{ee} \approx 1 - \frac{1}{2} \sin^2 2\theta \approx 0.6 \]
- High energy neutrinos (8B ν) \rightarrow matter enhanced
 oscillations
 \[P_{ee} \approx \sin^2 \theta \approx 0.3 \]
- Transition region between 1-4MeV
The MSW – LMA oscillation scenario

Large Mixing Angle

Global analysis of solar neutrino data + KamLAND:
\[\Delta m_{21}^2 = 7.6 \cdot 10^{-5} \text{ eV}^2 \]
\[\theta_{12} = (34 \pm 3)^\circ \]

Oscillations in vacuum probability averages over long distances, \(P_{ee} \approx 0.6 \)

Matter-enhanced oscillations interaction with solar matter increases osc. probability, \(P_{ee} \approx 0.3 \)

Schwetz et al. 1103.0734
Solar Neutrinos: what next?

- real-time spectroscopy of low energy neutrinos: 7Be, pep, CNO, pp
 (99% of solar neutrino flux is < 1 MeV)

![Solar Neutrino Spectra](image)

Cerenkov-experiments (SNO, SuperK)
< 10^{-4} of the total solar neutrino flux
Solar Neutrinos: what next?

- real-time spectroscopy of low energy neutrinos: 7Be, pep, CNO, pp (99% of solar neutrino flux is < 1 MeV)

- neutrino physics:
 - test transition region MSW to vacuum oscillations (1 – 4 MeV)
 - precision measurement $\theta_{12}, \Delta m_{21}^2$
 - Non-Standard Interactions

- solar physics:
 - high Z/ low Z SSM
 - test luminosity constraint $L_\nu = L_\odot$
 - determination of CNO: important for heavy stars
The Borexino Detector

Target: 300t PC + PPO (1.5 g/l) in 8.5m Ø nylon vessel (0.1 mm)

Fiducial volume: 100t (6 m Ø)

Buffer: 900t PC + DMP (5g/l) in 13.7m Ø stainless steel sphere

Rn diffusion barrier (11m Ø)

2200 8” PMTs (1800 with concentrators)

Muon veto: 208 8” PMTs
2200 t H₂O in steel tank 18m Ø
taking data since May 2007
Borexino: detection principle

- elastic scattering on electrons in organic liquid scintillator
 \[\nu_e \rightarrow W \rightarrow e^- \]

- detection via scintillation light:
 + low energy threshold
 + good energy & position resolution
 but:
 - no direction measurement
 - no distinction of \(\nu \) induced events from other \(\beta \) events

\[\Rightarrow \text{extreme radiopurity of the scintillator required} \]

shielding, material selection, purification
Radiopurity constraints

No specific signature of neutrino events except recoil energy of scattered e⁻
=> Background suppression is crucial

Intrinsic contamination of the liquid scintillator:

<table>
<thead>
<tr>
<th>Background</th>
<th>Typical abundance (source)</th>
<th>Goal</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹⁴C/¹²C</td>
<td>10⁻¹² (cosmogenic) g/g</td>
<td>~ 10⁻¹⁸ g/g</td>
<td>~ 2 x 10⁻¹⁸ g/g</td>
</tr>
<tr>
<td>²³⁸U (by ²¹⁴Bi-²¹⁴Po)</td>
<td>2 x 10⁻⁵ (dust) g/g</td>
<td>10⁻¹⁶ g/g</td>
<td>(1.6 ± 0.1) x 10⁻¹⁷ g/g < 9.7 x 10⁻¹⁹ g/g (2012)</td>
</tr>
<tr>
<td>²³²Th (by ²¹²Bi-²¹²Po)</td>
<td>2 x 10⁻⁵ (dust) g/g</td>
<td>10⁻¹⁶ g/g</td>
<td>(5 ± 1) x 10⁻¹⁸ g/g < 2 x 10⁻¹⁸ g/g (2012)</td>
</tr>
<tr>
<td>²¹⁰Po</td>
<td>Surface contamination</td>
<td>~1 c/day/t</td>
<td>2007: 70 c/d/t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2012: 4 c/d/t</td>
</tr>
<tr>
<td>⁴⁰K</td>
<td>2 x 10⁻⁶ (dust) g/g</td>
<td>~10⁻¹⁸ g/g</td>
<td>< 3 x 10⁻¹⁸ (90%) g/g</td>
</tr>
<tr>
<td>⁸⁵Kr</td>
<td>1 Bq/m³ (air)</td>
<td>~1 c/d/100t</td>
<td>(28 ± 7) c/d/100t < 6 c/d/100t (2012)</td>
</tr>
<tr>
<td>³⁹Ar</td>
<td>17 mBq/m³ (air)</td>
<td>~1 c/d/100t</td>
<td><< ⁸⁵Kr</td>
</tr>
</tbody>
</table>
Detector Calibration (2009)

Detector response vs position:
- 100 Hz 14C+222Rn in scintillator in ~ 200 positions

Quenching and energy scale:
- Beta: 14C, 222Rn in scintillator
- Alpha: 222Rn in scintillator
- Gamma: 139Ce, 57Co, 60Co, 203Hg, 65Zn, 40K, 85Sr, 54Mn
- Neutron: AmBe

Light Yield ~ 500 p.e./MeV

$\sigma(E)/E \approx 4.5\%/\sqrt{E}$

fiducial volume uncertainty: 1.3%

energy scale uncertainty (0-2 MeV): < 1.5 %
Borexino Expected Solar ν Spectrum

Spectrum with irreducible backgrounds:
Data reduction

^{14}C determines low energy threshold

^1Be window

^{210}Po

^{11}C

α's subtracted

raw data

muons subtracted

Fid. Volume cut

740 days

$\text{[count/5pe-day-100t]}$

[Charge]

$100 \quad 200 \quad 300 \quad 400 \quad 500 \quad 600 \quad 700 \quad 800 \quad 900 \quad 1000$

$10^{-1} \quad 1 \quad 10 \quad 10^2 \quad 10^3 \quad 10^4 \quad 10^5 \quad 10^6 \quad 10^7 \quad 10^8$

1 MeV

7Be window
A spectral fit is applied including the following signal + all intrinsic background components.

- 7Be, 85Kr, 14C, 11C
- 210Bi (very similar to CNO in this limited energy region)
- pp, pep, 8B, and CNO neutrinos fixed at SSM-LMA value

Fit with and without statistical subtraction of 210Po events, based on α/β pulse shape discrimination.

Two independent ways (MC based and analytical) were applied.
Precision measurement of ^7Be neutrino rate

Systematics

<table>
<thead>
<tr>
<th>Source</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger efficiency and stability</td>
<td><0.1</td>
</tr>
<tr>
<td>Live time</td>
<td>0.04</td>
</tr>
<tr>
<td>Scintillator density</td>
<td>0.05</td>
</tr>
<tr>
<td>Sacrifice of cuts</td>
<td>0.1</td>
</tr>
<tr>
<td>Fiducial volume</td>
<td>$^{+0.5}_{-1.3}$</td>
</tr>
<tr>
<td>Fit methods</td>
<td>2.0</td>
</tr>
<tr>
<td>Energy response</td>
<td>2.7</td>
</tr>
<tr>
<td>Total Systematic Error</td>
<td>$^{+3.4}_{-3.6}$</td>
</tr>
</tbody>
</table>

740 live days

$^7\text{Be} \quad 46.0 \pm 1.5^{+1.5}_{-1.6} \text{(syst)}$

$^{85}\text{Kr} \quad 31.2 \pm 1.7 \text{(stat)} \pm 4.7 \text{(syst)}$

$^{210}\text{Bi} \quad 41.0 \pm 1.7 \text{(stat)} \pm 2.3 \text{(syst)}$

$^{11}\text{C} \quad 28.5 \pm 0.2 \text{(stat)} \pm 0.7 \text{(syst)}$

combined error: 4.5%

Implications of the 7Be measurement

- electron equivalent flux (862 keV line): $(2.78 \pm 0.13) \times 10^9 \text{ cm}^{-2} \text{ s}^{-1}$
 no oscillation excluded @ 5.0σ

- assuming MSW-LMA:
 $f_{^7\text{Be}} = \frac{\phi}{\phi_{\text{SSM}}} = 0.97 \pm 0.09$

- including all solar experiments + luminosity constraint:
 $f_{\text{pp}} = 1.013 ^{+0.003}_{-0.010}$
 $f_{\text{CNO}} < 1.7\%$ (95 \% C.L.)

$P_{\text{ee}} = 0.51 \pm 0.07$ @ 862 keV

no power to resolve low/high metallicity problem
Absence of day-night asymmetry for 7Be ν

MSW: a possible regeneration of electron neutrinos in the matter (within the Earth during night): effect depends on the oscillation parameters and on energy.

$$A_{dn} = 2 \frac{R_N - R_D}{R_N + R_D} = \frac{R_{diff}}{\langle R \rangle}$$

$A_{DN} = 0.001 \pm 0.012$ (stat) ± 0.007 (syst)

- in agreement with MSW-LMA;
- LOW region excluded at $>8.5 \sigma$ with solar neutrinos only: for the first time without the use of reactor antineutrinos (KamLAND) and the assumption of CPT symmetry.

Borexino: Night-day spectrum

solar neutrino data WITHOUT Borexino

solar neutrino data WITH Borexino

A_{DN} excludes @ 99.73% CL
Low threshold measurement of the 8B solar ν

Borexino energy spectrum after muon subtraction:
246 live days

2.6 MeV γ’s from 208Tl on PMTs and in the buffer

Borexino threshold: 2.8 MeV

Expected (MSW-LMA) count rate due to 8B neutrinos above 2.8 MeV:

0.26 ± 0.03 c/d/100 tons

Signal/Background (>2.8 MeV):
~ 1/6000

Major background sources:

- Muons
- Gammas from neutron capture
- Radon emanation from the nylon vessel
- Short lived ($t < 2$ s) cosmogenic isotopes
- Long lived ($t > 2$ s) cosmogenic isotopes (10C)
- Bulk 232Th contamination (208Tl)
Low threshold measurement of the 8B solar ν

7Be and 8B flux measured with the same detector

Borexino 8B flux above 5 MeV agrees with existing data (SNO, SuperK)

Neutrino oscillation is confirmed at 4.2 σ
The first pep ν measurement

Expected pep interaction rate: 2-3 cpd/100t

Main background: ^{11}C, ^{210}Bi, external γ

^{210}Bi and CNO: very similar spectral shape

^{11}C reduction:
- Three Fold Coincidence (muon + neutron + C11)
- Novel pulse shape discrimination: e^+ / e^- discrimination

Multivariate analysis:
- fit of the energy spectra
- fit the radial distribution of the events (external γ background is not uniform)
- fit the pulse shape parameter

11C reduction: Threefold coincidence (TFC)

\[\mu + ^{12}C \rightarrow \mu + ^{11}C + n \]
\[^{11}C \tau \sim 30 \text{ min} \]
\[\rightarrow + p \rightarrow d + \gamma \]
\[\rightarrow ^{11}B + e^+ + \nu_e \]

in Borexino:
\~ 4300 muons/day
\> 250 neutrons /day
\~ 25 11C /day

11C reduction: Threefold coincidence (TFC)

Interaction point and 11C production point

m\(u^on\)

cylindrical cut around muon
+ spherical cut around \(\gamma\)
removes 90% of C11 residual exposure 48.5%

Effect of TFC on the spectrum

![Graph showing the effect of TFC on the spectrum.](attachment://graph.png)
pep and CNO neutrinos: results

pep neutrinos:
- Rate: $3.1 \pm 0.6_{\text{stat}} \pm 0.3_{\text{sys}}$ cpd/100 t
- $\Phi_{\text{pep}} = (1.6 \pm 0.3) \times 10^8$ cm$^{-2}$ s$^{-1}$
- No oscillations excluded at 97% C.L.
- Absence of pep solar ν excluded at 98%

CNO neutrinos:
- only limits, strong correlation with ^{210}Bi
- CNO limit obtained assuming pep @ SSM
 CNO rate < 7.1 cpd/100 t (95% c.l.)
- $\Phi_{\text{CNO}} < 7.7 \times 10^8$ cm$^{-2}$ s$^{-1}$ (95% C.L.)
- the strongest limit to date
- not sufficient to resolve metallicity problem

Physics implication of the Borexino results

MSW-LMA confirmed (7Be, pep and 8B measurement)

LOW excluded (solar only) by day-night-asymmetry
Predicted vs. measured solar neutrino fluxes

<table>
<thead>
<tr>
<th>Source</th>
<th>Flux [cm$^{-2}$s$^{-1}$] SSM-GS98</th>
<th>Flux [cm$^{-2}$s$^{-1}$] SSM-AGSS09</th>
<th>Measured Flux [cm$^{-2}$s$^{-1}$] global analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>5.98(1±0.006)$\times 10^{10}$</td>
<td>6.03(1±0.006)$\times 10^{10}$</td>
<td>6.05(1±0.01)$\times 10^{10}$</td>
</tr>
<tr>
<td>pep</td>
<td>1.44(1±0.012)$\times 10^{8}$</td>
<td>1.47(1±0.012)$\times 10^{8}$</td>
<td>1.46(1±0.014)$\times 10^{8}$</td>
</tr>
<tr>
<td>7Be</td>
<td>5.00(1±0.07)$\times 10^{9}$</td>
<td>4.56(1±0.07)$\times 10^{9}$</td>
<td>4.82(1±0.05)$\times 10^{9}$</td>
</tr>
<tr>
<td>8B</td>
<td>5.58(1±0.13)$\times 10^{6}$</td>
<td>4.59(1±0.13)$\times 10^{6}$</td>
<td>5.00(1±0.03)$\times 10^{6}$</td>
</tr>
<tr>
<td>13N</td>
<td>2.96(1±0.15)$\times 10^{8}$</td>
<td>2.17(1±0.15)$\times 10^{8}$</td>
<td></td>
</tr>
<tr>
<td>15O</td>
<td>2.23(1±0.16)$\times 10^{8}$</td>
<td>1.56(1±0.16)$\times 10^{8}$</td>
<td></td>
</tr>
<tr>
<td>17F</td>
<td>5.52(1±0.18)$\times 10^{6}$</td>
<td>3.40(1±0.16)$\times 10^{6}$</td>
<td></td>
</tr>
<tr>
<td>CNO total</td>
<td>5.24 x 10^{8}</td>
<td>3.76 x 10^{8}</td>
<td>$< 7.7 x 10^{8}$</td>
</tr>
</tbody>
</table>

high metallicity
low metallicity

metallicity problem cannot be resolved with present data

Goals (solar neutrinos):

• reach 3σ significance of pep signal (reduce 210Bi background)
• measure 7Be neutrinos to 3% (reduce 85Kr and 210Bi backgrounds)
• improve 8B measurement with low energy threshold (statistics)
 => test MSW
• improve limit on CNO neutrinos (reduce 210Bi background!)
 => probe metallicity
• direct detection of pp neutrinos (very challenging, need to improve knowledge on 14C spectrum and pile-up effects)
210Bi and 210Po in Borexino

- **last part of the 238U chain:**
 - 210Pb → 210Bi → 210Po → 206Pb (stable)
 - 210Po not stable
 - not in equilibrium
 - not a surprise: seen in the CTF (prototype)
 - origin not clear (surface contamination of filling tubes?)
 - introduced Po210 with every operation
 - now at ~ 3.5 c/d/t
CNO Neutrino Measurement

Main background: 210Bi, β-decay

similar spectral shapes

Constraining 210Bi rate looking at

time evolution of 210Po decay rate:

210Po $R(t=0) = 2000$ cpd/100 t

$M = 100$ ton

$\Delta t = 1$ year
Conclusions

• **Phase 1** of the Borexino experiment **successfully concluded**
 • First detection and 5% measurement of solar ^7Be neutrinos
 • ^8B-ν at low energy (>3 MeV), ^7Be-ν day-night
 • First detection of pep solar neutrinos

• Scintillator purification was successful, and **Phase 2 is starting**
 • rich program on solar neutrino physics:
 – probe MSW through ^8B at low energy, pep and more precise ^7Be
 – attempt to detect pp in real time
 – possible interesting upper limit on CNO, probe solar metallicity

• on our wish list: a galactic Supernova
Borexino References

• **Solar neutrino results**
 – \(^{7}\text{Be}\) at 10\% + \(f_{\text{pp}}/f_{\text{CNO}}\): PhysRevLett 101, 091302 (2008)

• **Other physics:**
 – Cosmic muon flux and annual modulation in Borexino, JINST 1205, 015, 2012

• **Search of rare processes**
 – Anti-neutrinos from unknown sources, PLB 696 (2011) 191-196
 – Limits on Pauli forbidden transitions on 12C, PRC 81 (2010) 034317
 – Search for solar axions from \(p(d,3\text{He})a\), PRD 85 (2012) 092003

more interesting results to come
Thank you for the attention!