Telescop 000	es Abundances 000000	Assumptions and correction	s Formation processes	Conclusion 00
	The chemic	al evolution of Sr a	and its neighbour	ring
			0	

The chemical evolution of Sr and its neighbouring elements Russbach

Camilla Juul Hansen

Heidelberg University, ZAH

March, 2013

< • • • • **•**

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes 000	Abundances 000000	Assumptions and corrections	Formation processes	Conclusion 00

- Telescopes and instruments
- Stellar abundances
- Sr assumptions and corrections
- Formation processes and chemical evolution

Camilla Juul Hansen

Telescopes 000	Abundances 000000	Assumptions and corrections	Formation processes	Conclusion 00

- Telescopes and instruments
- Stellar abundances
- Sr assumptions and corrections
- Formation processes and chemical evolution

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes 000	Abundances 000000	Assumptions and corrections	Formation processes	Conclusion 00

- Telescopes and instruments
- Stellar abundances
- Sr assumptions and corrections
- Formation processes and chemical evolution

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes 000	Abundances 000000	Assumptions and corrections	Formation processes	Conclusion 00

- Telescopes and instruments
- Stellar abundances
- Sr assumptions and corrections
- Formation processes and chemical evolution

Heidelberg University, ZAH

Telescopes 000	Abundances 000000	Assumptions and corrections	Formation processes	Conclusion 00

- Telescopes and instruments
- Stellar abundances
- Sr assumptions and corrections
- Formation processes and chemical evolution

Heidelberg University, ZAH

Heidelberg University, ZAH

A B + A B + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Camilla Juul Hansen

Telescopes	Abundances	Assumptions and corrections	Formation processes	Conclusion
000	000000	00000000	0000	
VLT/UVES and LAMOST				

Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) — 4-m mirror, 4000 fibres $\rightarrow 10000$ stars/night or $2\cdot 10^6$ stars/year

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes	Abundances	Assumptions and corrections	Formation processes	Conclusion
000	000000	00000000	0000	00
VLT/UVES and L	AMOST			

LAMOST vs UVES spectra

LAMOST (low resolution $R \sim 1800$) and ESO VLT (UVES - high resolution $R \sim 40000$)

Important: Sr may be the only heavy element for which we will be able to derive abundances in low-resolution spectra.

Heidelberg University, ZAH

Telescopes 000	Abundances ●00000	Assumptions and corrections	Formation processes	Conclusion 00

Stellar spectra – 2D to 1D

ARI ITA LSW

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes 000	Abundances 0●0000	Assumptions and corrections	Formation processes	Conclusion

Stellar spectra and equivalent width (W)

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes 000	Abundances 00●000	Assumptions and corrections	Formation processes	Conclusion 00

Strontium

Heidelberg University, ZAH

A B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Camilla Juul Hansen

Telescopes 000	Abundances 000●00	Assumptions and corrections	Formation processes	Conclusion 00

Two ways of deriving abundances:

- Equivalent width and synthetic spectra
- We need to know the stellar parameters: Temperature, gravity, metallicity and velocity (small scale)
- Model atmosphere (e.g. MARCS) and synthetic spectrum code (e.g. MOOG)
- Assumptions: 1D, LTE one local temperature, black body ratiation (Planck), Maxwellian velocity distribution, Boltzmann and Saha describe excitation and ionisation
- Line lists with atomic and molecular information (excitation potential and log gf)

Heidelberg University, ZAH

Telescopes 000	Abundances 0000●0	Assumptions and corrections	Formation processes	Conclusion

Temperature, gravity and metallicity

- The color of a star depends on two factors: Temperature and metallicity
- Color (V-K) calibration: $T = a + b(V - K) + c(V - K)^2 + d(V - K)[Fe/H] + \dots$
- Excitation potential based on Fe lines (3D, NLTE sensitive)
- Parallax/distance (π): $log \frac{g}{g_{Sun}} = log \frac{M}{M_{Sun}} + 4 \frac{T}{T_{Sun}} + 0.4V_o + 2log(\pi) + corrections$

A D > A A > A >

- Ionisation equilibrium from Fe lines (NLTE sensitive)
- Metallicity ([Fe/H]) from equivalent widths of Fe lines

Heidelberg University, ZAH

Telescopes 000	Abun dan ces 00000●	Assumptions and corrections	Formation processes	Conclusion 00

Stellar abundances and [Fe/H]

$$\log W = \log(const) + \log(A) + \log(gf\lambda) - \theta\chi - \log(\kappa)$$
 (1)

$$[Fe/H] \equiv \log(N_{Fe}/N_{H})_{*} - \log(N_{Fe}/N_{H})_{\odot}$$
⁽²⁾

Camilla Juul Hansen

Heidelberg University, ZAH

ARI ITA LSW

Assumptions: LTE vs NLTE - the impact on stellar parameters

Telescopes 000	Abundances 000000	Assumptions and corrections ○●○○○○○○○	Formation processes	Conclusion

Assumptions: LTE vs NLTE - Strontium

ARI ITA LSW 500

Camilla Juul Hansen

Telescopes 000	Abundances 000000	Assumptions and corrections 00●000000	Formation processes	Conclusion

Chemical evolution of Sr from O-Mg-Ne faint CCSN Yields from Wanajo et al.

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes 000	Abun dan ces 000000	Assumptions and corrections	Formation processes	Conclusion 00

Chemical evolution of Sr from neutrino-driven winds Yields from Arcones & Montes

Heidelberg University, ZAH

The chemical evolution of Sr and its neighbouring elements

Camilla Juul Hansen

Telescopes 000	Abundances 000000	Assumptions and corrections	Formation processes	Conclusion 00

Chemical evolution of Sr from fast rotating stars Yields from Frischknecht et al.

Camilla Juul Hansen

Heidelberg University, ZAH

The chemical evolution of $\mathsf{Sr}-\mathsf{LTE}$ vs NLTE Two processes are needed

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes 000	Abun dan ces 000000	Assumptions and corrections	Formation processes	Conclusion 00
1D vs Calcul Caffai	3D lations based c 1):	on CO5BOLD for the 40)77.7A Sr line (E.	

Line strength	Giant	Giant	Dwarf	Dwarf
Sr II [mA]	$3D - \langle 3D \rangle$	3D - 1D	3D - < 3D >	3D - 1D
178	0.142	0.118	-	-
158	0.198	0.151	-	-
100	-	-	0.246	0.077
85	-	-	0.278	0.092

G: 4500/2.0/-3.0/1.8, Dw: 5900/4.0/-2.0/1.5

The corrections are sensitive to line strength and the lower energy level.

 $3D - \langle 3D \rangle$ express the size of fluctuations, while 3D-1D is related to the treatment of convection (and microturbulence).

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes 000	Abundances 000000	Assumptions and corrections	Formation processes	Conclusion

NLTE corrections

Line strength	Giant	Dwarf
Sr II [mA]	$\Delta NLTE$	$\Delta NLTE$
158	-0.14	-0.08
Sr I	0.34	0.34

The corrections are very sensitive to the stellar parameters, the line strength, and majority/minority species. In general giants have larger corrections than dwarfs.

Telescopes	Abundances	Assumptions and corrections	Formation processes	Conclusion
		00000000		

What can we learn from stellar abundance patterns? LTE vs NLTE

- Observationally derived abundances for most MP RR lyrae
- The groups of elements trace various supernova (SN) features:
- α-elements serve as tracers of SN Mass (Kobayashi et al 06)
- The α/odd-Z elements provide information on the explosion energy, IMF and SN metallicity
- The amounts of Sc, Ti and Zn are linked to Y_e
- In-/complete Si-burning elements provide clues on the T_{peak}

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes	Abundances	Assumptions and corrections	Formation processes	Conclusion
		00000000		

What can we learn from stellar abundance patterns? LTE vs NLTE

- Observationally derived abundances for most MP RR lyrae
- The groups of elements trace various supernova (SN) features:
- α-elements serve as tracers of SN Mass (Kobayashi et al 06)
- The α/odd-Z elements provide information on the explosion energy, IMF and SN metallicity
- The amounts of Sc, Ti and Zn are linked to Y_e
- In-/complete Si-burning elements provide clues on the T_{peak}

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes	Abun dan ces	Assumptions and corrections	Formation processes	Conclusion
000	000000		○●○○	00

Chemical evolution of Sr

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes 000	Abundances 000000	Assumptions and corrections	Formation processes 00●0	Conclusion

Sr, Y, and Zr

All three elements (Sr, Y, Zr) correlate

Camilla Juul Hansen

Correlations Sr correlate with Mg and Ca (α -element)

Correlation slope \sim 1.2. LEPP region elements could share formation process with α -elements. E.g. α -,n-rich freeze-out?

Frebel et al, 2010

Camilla Juul Hansen

Telescopes 000	Abundances 000000	Assumptions and corrections	Formation processes	Conclusion ●○

- Accurate high-resolution spectroscopy necessary to derive abundances of heavy elements other than Sr.
- It is important to have NLTE corrections for all abundances, otherwise wrong conclusions on chemical evolution or progenitor generation might be drawn.
- In some cases (for some elements) 3D corrections are even bigger than NLTE corrections. We need 3D+NLTE to have the final/correct abundances.
- The LEPP/weak-r might be related to an 'lpha-process'
- Mixing processes, 3D self consistent explosions, optimized yields, are essential to understand the information we gain from stellar abundances.
- The large star-to-star scatter dominates any other trend or correction seen for Sr.

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes 000	Abundances 000000	Assumptions and corrections	Formation processes	Conclusion ●○

- Accurate high-resolution spectroscopy necessary to derive abundances of heavy elements other than Sr.
- It is important to have NLTE corrections for all abundances, otherwise wrong conclusions on chemical evolution or progenitor generation might be drawn.
- In some cases (for some elements) 3D corrections are even bigger than NLTE corrections. We need 3D+NLTE to have the final/correct abundances.
- The LEPP/weak-r might be related to an 'lpha-process'
- Mixing processes, 3D self consistent explosions, optimized yields, are essential to understand the information we gain from stellar abundances.
- The large star-to-star scatter dominates any other trend or correction seen for Sr.

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes 000	Abundances 000000	Assumptions and corrections	Formation processes	Conclusion ●○

- Accurate high-resolution spectroscopy necessary to derive abundances of heavy elements other than Sr.
- It is important to have NLTE corrections for all abundances, otherwise wrong conclusions on chemical evolution or progenitor generation might be drawn.
- In some cases (for some elements) 3D corrections are even bigger than NLTE corrections. We need 3D+NLTE to have the final/correct abundances.
- The LEPP/weak-r might be related to an 'lpha-process'
- Mixing processes, 3D self consistent explosions, optimized yields, are essential to understand the information we gain from stellar abundances.
- The large star-to-star scatter dominates any other trend or correction seen for Sr.

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes 000	Abundances 000000	Assumptions and corrections	Formation processes	Conclusion ●○

- Accurate high-resolution spectroscopy necessary to derive abundances of heavy elements other than Sr.
- It is important to have NLTE corrections for all abundances, otherwise wrong conclusions on chemical evolution or progenitor generation might be drawn.
- In some cases (for some elements) 3D corrections are even bigger than NLTE corrections. We need 3D+NLTE to have the final/correct abundances.
- The LEPP/weak-r might be related to an 'lpha-process'
- Mixing processes, 3D self consistent explosions, optimized yields, are essential to understand the information we gain from stellar abundances.
- The large star-to-star scatter dominates any other trend or correction seen for Sr.

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes 000	Abundances 000000	Assumptions and corrections	Formation processes	Conclusion ●○

- Accurate high-resolution spectroscopy necessary to derive abundances of heavy elements other than Sr.
- It is important to have NLTE corrections for all abundances, otherwise wrong conclusions on chemical evolution or progenitor generation might be drawn.
- In some cases (for some elements) 3D corrections are even bigger than NLTE corrections. We need 3D+NLTE to have the final/correct abundances.
- The LEPP/weak-r might be related to an 'lpha-process'
- Mixing processes, 3D self consistent explosions, optimized yields, are essential to understand the information we gain from stellar abundances.
- The large star-to-star scatter dominates any other trend or correction seen for Sr.

Heidelberg University, ZAH

Camilla Juul Hansen

Telescopes 000	Abundances 000000	Assumptions and corrections	Formation processes	Conclusion ●○

- Accurate high-resolution spectroscopy necessary to derive abundances of heavy elements other than Sr.
- It is important to have NLTE corrections for all abundances, otherwise wrong conclusions on chemical evolution or progenitor generation might be drawn.
- In some cases (for some elements) 3D corrections are even bigger than NLTE corrections. We need 3D+NLTE to have the final/correct abundances.
- The LEPP/weak-r might be related to an 'lpha-process'
- Mixing processes, 3D self consistent explosions, optimized yields, are essential to understand the information we gain from stellar abundances.
- The large star-to-star scatter dominates any other trend or correction seen for Sr.

Heidelberg University, ZAH

Telescopes 000	Abundances 000000	Assumptions and corrections	Formation processes	Conclusion ●○

- Accurate high-resolution spectroscopy necessary to derive abundances of heavy elements other than Sr.
- It is important to have NLTE corrections for all abundances, otherwise wrong conclusions on chemical evolution or progenitor generation might be drawn.
- In some cases (for some elements) 3D corrections are even bigger than NLTE corrections. We need 3D+NLTE to have the final/correct abundances.
- The LEPP/weak-r might be related to an 'lpha-process'
- Mixing processes, 3D self consistent explosions, optimized yields, are essential to understand the information we gain from stellar abundances.
- The large star-to-star scatter dominates any other trend or correction seen for Sr.

Heidelberg University, ZAH

Telescopes A	Abundances 000000	Assumptions and corrections	Formation processes	Conclusion ⊙●

Thank you for listening

Finally thanks to some of my collaborators: F. Montes, N. Christlieb, K.-L. Kratz, S. Wanajo, H. Hartmann, O. Hallmann, M. Bergemann, B. Nordström, A. Arcones, LSW, and SFB 881 for support.

